Skip to main content

Advertisement

Log in

Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal prognosis which is, among others, due to a lack of suitable biomarkers and therapeutic targets. Previously, basic gene expression analysis methods have been used for their identification, but recently new algorithms have been developed allowing more comprehensive data analyses. Among them, weighted gene co-expression network analysis (WGCNA) has already been applied to several cancer types with promising results.

Methods

We applied WGCNA to miRNA expression data from PDAC patients. Specifically, we processed microarray-based expression data of 2555 miRNAs in serum from 100 PDAC patients and 150 healthy subjects. We identified network modules of co-expressed miRNAs in the healthy subject dataset and verified their preservation in the PDAC dataset. In the non-preserved modules, we selected key miRNAs and carried out functional enrichment analyses of their experimentally known target genes. Finally, we tested their prognostic significance using overall survival analyses.

Results

Through WGCNA we identified several miRNAs that discriminate healthy subjects from PDAC patients and that, therefore, may play critical roles in PDAC development. At a functional level, we found that they regulate p53, FoxO and ErbB associated cellular signalling pathways, as well as cell cycle progression and various genes known to be involved in PDAC development. Some miRNAs were also found to serve as novel prognostic biomarkers, whereas others have previously already been proposed as such, thereby validating the WGCNA approach. In addition, we found that these novel data may explain at least some of our previous PDAC gene expression analysis results.

Conclusions

We identified several miRNAs critical for PDAC development using WGCNA. These miRNAs may serve as biomarkers for PDAC diagnosis/prognosis and patient stratification, and as putative novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016. CA Cancer J Clin 66, 7–30 (2016)

    Article  PubMed  Google Scholar 

  2. M. Hidalgo, S. Cascinu, J. Kleeff, R. Labianca, J.M. Lohr, J. Neoptolemos, F.X. Real, J.L. Van Laethem, V. Heinemann, Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology 15, 8–18 (2015)

    Article  PubMed  Google Scholar 

  3. S. Majumder, S.T. Chari, D.A. Ahlquist, Molecular detection of pancreatic neoplasia: current status and future promise. World J Gastroenterol 21, 11387–11395 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N Engl J Med 371, 1039–1049 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. K. Andrikou, M. Santoni, F. Piva, A. Bittoni, A. Lanese, C. Pellei, A. Conti, C. Loretelli, A. Mandolesi, M. Giulietti, M. Scarpelli, G. Principato, M. Falconi, S. Cascinu, Lgr5 expression, cancer stem cells and pancreatic cancer: results from biological and computational analyses. Future Oncol 11, 1037–1045 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. T.R. Donahue, L.M. Tran, R. Hill, Y. Li, A. Kovochich, J.H. Calvopina, S.G. Patel, N. Wu, A. Hindoyan, J.J. Farrell, X. Li, D.W. Dawson, H. Wu, Integrative survival-based molecular profiling of human pancreatic cancer. Clin Cancer Res 18, 1352–1363 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. G. Zhang, A. Schetter, P. He, N. Funamizu, J. Gaedcke, B.M. Ghadimi, T. Ried, R. Hassan, H.G. Yfantis, D.H. Lee, C. Lacy, A. Maitra, N. Hanna, H.R. Alexander, S.P. Hussain, DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PLoS One 7, e31507 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M.R. Carlson, B. Zhang, Z. Fang, P.S. Mischel, S. Horvath, S.F. Nelson, Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics 7, 40 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  9. S.L. Carter, C.M. Brechbuhler, M. Griffin, A.T. Bond, Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20, 2242–2250 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. J.M. Stuart, E. Segal, D. Koller, S.K. Kim, A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. J.A. Miller, S. Horvath, D.H. Geschwind, Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci U S A 107, 12698–12703 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y.X. Wang, H. Huang, Review on statistical methods for gene network reconstruction using expression data. J Theor Biol 362, 53–61 (2014)

    Article  PubMed  Google Scholar 

  13. C.F. Staehler, A. Keller, P. Leidinger, C. Backes, A. Chandran, J. Wischhusen, B. Meder, E. Meese, Whole miRNome-wide differential co-expression of microRNAs. Genomics Proteomics Bioinformatics 10, 285–294 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Bhattacharyya, S. Bandyopadhyay, Studying the differential co-expression of microRNAs reveals significant role of white matter in early Alzheimer's progression. Mol BioSyst 9, 457–466 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. C.C. Lin, R. Mitra, F. Cheng, Z. Zhao, A cross-cancer differential co-expression network reveals microRNA-regulated oncogenic functional modules. Mol BioSyst 11, 3244–3252 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. B. Zhang, S. Horvath, A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4, 17 (2005)

    Google Scholar 

  17. M.C. Oldham, G. Konopka, K. Iwamoto, P. Langfelder, T. Kato, S. Horvath, D.H. Geschwind, Functional organization of the transcriptome in human brain. Nat Neurosci 11, 1271–1282 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. I. Voineagu, X. Wang, P. Johnston, J.K. Lowe, Y. Tian, S. Horvath, J. Mill, R.M. Cantor, B.J. Blencowe, D.H. Geschwind, Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. P.S. Gargalovic, M. Imura, B. Zhang, N.M. Gharavi, M.J. Clark, J. Pagnon, W.P. Yang, A. He, A. Truong, S. Patel, S.F. Nelson, S. Horvath, J.A. Berliner, T.G. Kirchgessner, A.J. Lusis, Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci U S A 103, 12741–12746 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. R. Liu, C.X. Guo, H.H. Zhou, Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen. Cancer Biol Ther 16, 317–324 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. C. Clarke, S.F. Madden, P. Doolan, S.T. Aherne, H. Joyce, L. O'Driscoll, W.M. Gallagher, B.T. Hennessy, M. Moriarty, J. Crown, S. Kennedy, M. Clynes, Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis. Carcinogenesis 34, 2300–2308 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. Y.S. Lee, S.G. Hwang, J.K. Kim, T.H. Park, Y.R. Kim, H.S. Myeong, J.D. Choi, K. Kwon, C.S. Jang, Y.T. Ro, Y.H. Noh, S.Y. Kim, Identification of novel therapeutic target genes in acquired lapatinib-resistant breast cancer by integrative meta-analysis. Tumour Biol 37, 2285–2297 (2015)

    Article  PubMed  Google Scholar 

  23. Z. Mousavian, A. Nowzari-Dalini, R.W. Stam, Y. Rahmatallah, A. Masoudi-Nejad, Network-based expression analysis reveals key genes related to glucocorticoid resistance in infant acute lymphoblastic leukemia. Cell Oncol 40, 33–45 (2017)

    Article  CAS  Google Scholar 

  24. M. Giulietti, G. Occhipinti, G. Principato, F. Piva, Weighted gene co-expression network analysis reveals key genes involved in pancreatic ductal adenocarcinoma development. Cell Oncol 39, 379–388 (2016)

    Article  CAS  Google Scholar 

  25. M. Diab, I. Muqbil, R.M. Mohammad, A.S. Azmi, P.A. Philip, The role of microRNAs in the diagnosis and treatment of pancreatic adenocarcinoma. J Clin Med 5, E59 (2016)

    Article  PubMed  Google Scholar 

  26. V. Taucher, H. Mangge, J. Haybaeck, Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell Oncol 39, 295–318 (2016)

    Article  CAS  Google Scholar 

  27. C. Yu, M. Wang, Z. Li, J. Xiao, F. Peng, X. Guo, Y. Deng, J. Jiang, C. Sun, MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell Oncol 38, 173–181 (2015)

    Article  Google Scholar 

  28. M.L. Abba, N. Patil, J.H. Leupold, H. Allgayer, MicroRNA regulation of epithelial to mesenchymal transition. J Clin Med 5, E8 (2016)

    Article  PubMed  Google Scholar 

  29. M. Beuran, I. Negoi, S. Paun, A.D. Ion, C. Bleotu, R.I. Negoi, S. Hostiuc, The epithelial to mesenchymal transition in pancreatic cancer: a systematic review. Pancreatology 15, 217–225 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. F. Piva, M. Giulietti, M. Santoni, G. Occhipinti, M. Scarpelli, A. Lopez-Beltran, L. Cheng, G. Principato, R. Montironi, Epithelial to mesenchymal transition in renal cell carcinoma: implications for cancer therapy. Mol Diagn Ther 20, 111–117 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Y. Xue, A.N. Abou Tayoun, K.M. Abo, J.M. Pipas, S.R. Gordon, T.B. Gardner, R.J. Barth Jr., A.A. Suriawinata, G.J. Tsongalis, MicroRNAs as diagnostic markers for pancreatic ductal adenocarcinoma and its precursor, pancreatic intraepithelial neoplasm. Cancer Gene Ther 206, 217–221 (2013)

    Article  CAS  Google Scholar 

  32. N.A. Schultz, C. Dehlendorff, B.V. Jensen, J.K. Bjerregaard, K.R. Nielsen, S.E. Bojesen, D. Calatayud, S.E. Nielsen, M. Yilmaz, N.H. Hollander, K.K. Andersen, J.S. Johansen, MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA 311, 392–404 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. J. Xu, Z. Cao, W. Liu, L. You, L. Zhou, C. Wang, W. Lou, B. Sun, Y. Miao, X. Liu, T. Zhang, Y. Zhao, Plasma miRNAs effectively distinguish patients with pancreatic cancer from controls: a multicenter study. Ann Surg 263, 1173–1179 (2016)

    Article  PubMed  Google Scholar 

  34. L. Moldovan, K.E. Batte, J. Trgovcich, J. Wisler, C.B. Marsh, M. Piper, Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 18, 371–390 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Kojima, H. Sudo, J. Kawauchi, S. Takizawa, S. Kondou, H. Nobumasa, A. Ochiai, MicroRNA markers for the diagnosis of pancreatic and biliary-tract cancers. PLoS One 10, e0118220 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  36. P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  37. M.C. Oldham, P. Langfelder, S. Horvath, Network methods for describing sample relationships in genomic datasets: application to Huntington's disease. BMC Syst Biol 6, 63 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  38. P. Langfelder, R. Luo, M.C. Oldham, S. Horvath, Is my network module preserved and reproducible? PLoS Comput Biol 7, e1001057 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. E. Vauleon, A. Tony, A. Hamlat, A. Etcheverry, D.C. Chiforeanu, P. Menei, J. Mosser, V. Quillien, M. Aubry, Immune genes are associated with human glioblastoma pathology and patient survival. BMC Med Genet 5, 41 (2012)

    CAS  Google Scholar 

  40. Y. Fan, K. Siklenka, S.K. Arora, P. Ribeiro, S. Kimmins, J. Xia, miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 44, W135-W141 (2016)

  41. R. Aguirre-Gamboa, V. Trevino, SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis. Bioinformatics 30, 1630–1632 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. P. Langfelder, S. Horvath, Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 1, 54 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  43. A.S. Bauer, A. Keller, E. Costello, W. Greenhalf, M. Bier, A. Borries, M. Beier, J. Neoptolemos, M. Buchler, J. Werner, N. Giese, J.D. Hoheisel, Diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis by measurement of microRNA abundance in blood and tissue. PLoS One 7, e34151 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Ali, K. Almhanna, W. Chen, P.A. Philip, F.H. Sarkar, Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am J Transl Res 3, 28–47 (2010)

    PubMed  PubMed Central  Google Scholar 

  45. M. Miyamae, S. Komatsu, D. Ichikawa, T. Kawaguchi, S. Hirajima, W. Okajima, T. Ohashi, T. Imamura, H. Konishi, A. Shiozaki, R. Morimura, H. Ikoma, T. Ochiai, K. Okamoto, H. Taniguchi, E. Otsuji, Plasma microRNA profiles: identification of miR-744 as a novel diagnostic and prognostic biomarker in pancreatic cancer. Br J Cancer 113, 1467–1476 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M.S. Lin, W.C. Chen, J.X. Huang, H.J. Gao, H.H. Sheng, Aberrant expression of microRNAs in serum may identify individuals with pancreatic cancer. Int J Clin Exp Med 7, 5226–5234 (2014)

    PubMed  PubMed Central  Google Scholar 

  47. J. Liu, J. Gao, Y. Du, Z. Li, Y. Ren, J. Gu, X. Wang, Y. Gong, W. Wang, X. Kong, Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int J Cancer 131, 683–691 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. X. Kong, Y. Du, G. Wang, J. Gao, Y. Gong, L. Li, Z. Zhang, J. Zhu, Q. Jing, Y. Qin, Z. Li, Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potential marker for poor prognosis. Dig Dis Sci 56, 602–609 (2011)

    Article  CAS  PubMed  Google Scholar 

  49. J. Wang, J. Chen, P. Chang, A. LeBlanc, D. Li, J.L. Abbruzzesse, M.L. Frazier, A.M. Killary, S. Sen, MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res 2, 807–813 (2009)

    Article  CAS  Google Scholar 

  50. M. Bloomston, W.L. Frankel, F. Petrocca, S. Volinia, H. Alder, J.P. Hagan, C.G. Liu, D. Bhatt, C. Taccioli, C.M. Croce, MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007)

    Article  CAS  PubMed  Google Scholar 

  51. M. Liu, Y. Du, J. Gao, J. Liu, X. Kong, Y. Gong, Z. Li, H. Wu, H. Chen, Aberrant expression miR-196a is associated with abnormal apoptosis, invasion, and proliferation of pancreatic cancer cells. Pancreas 42, 1169–1181 (2013)

    Article  PubMed  Google Scholar 

  52. F. Huang, J. Tang, X. Zhuang, Y. Zhuang, W. Cheng, W. Chen, H. Yao, S. Zhang, MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS One 9, e87897 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  53. R. Que, G. Ding, J. Chen, L. Cao, Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol 11, 219 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  54. A.O. Batagov, V.A. Kuznetsov, I.V. Kurochkin, Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genomics 12 Suppl 3, S18 (2011)

  55. M. Giulietti, S.A. Milantoni, T. Armeni, G. Principato, F. Piva, ExportAid: database of RNA elements regulating nuclear RNA export in mammals. Bioinformatics 31, 246–251 (2015)

    Article  CAS  PubMed  Google Scholar 

  56. S. Volinia, G.A. Calin, C.G. Liu, S. Ambs, A. Cimmino, F. Petrocca, R. Visone, M. Iorio, C. Roldo, M. Ferracin, R.L. Prueitt, N. Yanaihara, G. Lanza, A. Scarpa, A. Vecchione, M. Negrini, C.C. Harris, C.M. Croce, A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103, 2257–2261 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. B. Fu, M. Luo, S. Lakkur, R. Lucito, C.A. Iacobuzio-Donahue, Frequent genomic copy number gain and overexpression of GATA-6 in pancreatic carcinoma. Cancer Biol Ther 7, 1593–1601 (2008)

    Article  CAS  PubMed  Google Scholar 

  58. K.A. Kwei, M.D. Bashyam, J. Kao, R. Ratheesh, E.C. Reddy, Y.H. Kim, K. Montgomery, C.P. Giacomini, Y.L. Choi, S. Chatterjee, C.A. Karikari, K. Salari, P. Wang, T. Hernandez-Boussard, G. Swarnalata, M. van de Rijn, A. Maitra, J.R. Pollack, Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer. PLoS Genet 4, e1000081 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  59. W.B. Chen, F.T. Huang, Y.Y. Zhuang, J. Tang, X.H. Zhuang, W.J. Cheng, Z.Q. Gu, S.N. Zhang, Silencing of GATA6 suppresses SW1990 pancreatic cancer cell growth in vitro and up-regulates reactive oxygen species. Dig Dis Sci 58, 2518–2527 (2013)

    Article  CAS  PubMed  Google Scholar 

  60. Y. Zhong, Z. Wang, B. Fu, F. Pan, S. Yachida, M. Dhara, E. Albesiano, L. Li, Y. Naito, F. Vilardell, C. Cummings, P. Martinelli, A. Li, R. Yonescu, Q. Ma, C.A. Griffin, F.X. Real, C.A. Iacobuzio-Donahue, GATA6 activates Wnt signaling in pancreatic cancer by negatively regulating the Wnt antagonist Dickkopf-1. PLoS One 6, e22129 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. P. Martinelli, E. Carrillo-de Santa Pau, T. Cox, B. Sainz, Jr., N. Dusetti, W. Greenhalf, L. Rinaldi, E. Costello, P. Ghaneh, N. Malats, M. Buchler, M. Pajic, A.V. Biankin, J. Iovanna, J. Neoptolemos, F.X. Real, GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut. (2016). doi:10.1136/gutjnl-2015-311256

  62. T. Nakamura, Y. Furukawa, H. Nakagawa, T. Tsunoda, H. Ohigashi, K. Murata, O. Ishikawa, K. Ohgaki, N. Kashimura, M. Miyamoto, S. Hirano, S. Kondo, H. Katoh, Y. Nakamura, T. Katagiri, Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene 23, 2385–2400 (2004)

    Article  CAS  PubMed  Google Scholar 

  63. C.A. Iacobuzio-Donahue, A. Maitra, G.L. Shen-Ong, T. van Heek, R. Ashfaq, R. Meyer, K. Walter, K. Berg, M.A. Hollingsworth, J.L. Cameron, C.J. Yeo, S.E. Kern, M. Goggins, R.H. Hruban, Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol 160, 1239–1249 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. S. Jones, X. Zhang, D.W. Parsons, J.C. Lin, R.J. Leary, P. Angenendt, P. Mankoo, H. Carter, H. Kamiyama, A. Jimeno, S.M. Hong, B. Fu, M.T. Lin, E.S. Calhoun, M. Kamiyama, K. Walter, T. Nikolskaya, Y. Nikolsky, J. Hartigan, D.R. Smith, M. Hidalgo, S.D. Leach, A.P. Klein, E.M. Jaffee, M. Goggins, A. Maitra, C. Iacobuzio-Donahue, J.R. Eshleman, S.E. Kern, R.H. Hruban, R. Karchin, N. Papadopoulos, G. Parmigiani, B. Vogelstein, V.E. Velculescu, K.W. Kinzler, Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008)

  65. A. Thakur, A. Bollig, J. Wu, D.J. Liao, Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice. Mol Cancer 7, 11 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  66. S.J. Murphy, S.N. Hart, J.F. Lima, B.R. Kipp, M. Klebig, J.L. Winters, C. Szabo, L. Zhang, B.W. Eckloff, G.M. Petersen, S.E. Scherer, R.A. Gibbs, R.R. McWilliams, G. Vasmatzis, F.J. Couch, Genetic alterations associated with progression from pancreatic intraepithelial neoplasia to invasive pancreatic tumor. Gastroenterology 145, 1098–1109 e1091 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. A.V. Biankin, N. Waddell, K.S. Kassahn, M.C. Gingras, L.B. Muthuswamy, A.L. Johns, D.K. Miller, P.J. Wilson, A.M. Patch, J. Wu, D.K. Chang, M.J. Cowley, B.B. Gardiner, S. Song, I. Harliwong, S. Idrisoglu, C. Nourse, E. Nourbakhsh, S. Manning, S. Wani, M. Gongora, M. Pajic, C.J. Scarlett, A.J. Gill, A.V. Pinho, I. Rooman, M. Anderson, O. Holmes, C. Leonard, D. Taylor, S. Wood, Q. Xu, K. Nones, J.L. Fink, A. Christ, T. Bruxner, N. Cloonan, G. Kolle, F. Newell, M. Pinese, R.S. Mead, J.L. Humphris, W. Kaplan, M.D. Jones, E.K. Colvin, A.M. Nagrial, E.S. Humphrey, A. Chou, V.T. Chin, L.A. Chantrill, A. Mawson, J.S. Samra, J.G. Kench, J.A. Lovell, R.J. Daly, N.D. Merrett, C. Toon, K. Epari, N.Q. Nguyen, A. Barbour, N. Zeps, N. Kakkar, F. Zhao, Y.Q. Wu, M. Wang, D.M. Muzny, W.E. Fisher, F.C. Brunicardi, S.E. Hodges, J.G. Reid, J. Drummond, K. Chang, Y. Han, L.R. Lewis, H. Dinh, C.J. Buhay, T. Beck, L. Timms, M. Sam, K. Begley, A. Brown, D. Pai, A. Panchal, N. Buchner, R. De Borja, R.E. Denroche, C.K. Yung, S. Serra, N. Onetto, D. Mukhopadhyay, M.S. Tsao, P.A. Shaw, G.M. Petersen, S. Gallinger, R.H. Hruban, A. Maitra, C.A. Iacobuzio-Donahue, R.D. Schulick, C.L. Wolfgang, R.A. Morgan, R.T. Lawlor, P. Capelli, V. Corbo, M. Scardoni, G. Tortora, M.A. Tempero, K.M. Mann, N.A. Jenkins, P.A. Perez-Mancera, D.J. Adams, D.A. Largaespada, L.F. Wessels, A.G. Rust, L.D. Stein, D.A. Tuveson, N.G. Copeland, E.A. Musgrove, A. Scarpa, J.R. Eshleman, T.J. Hudson, R.L. Sutherland, D.A. Wheeler, J.V. Pearson, J.D. McPherson, R.A. Gibbs, S.M. Grimmond, Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012)

  68. F. Piva, M. Giulietti, G. Occhipinti, M. Santoni, F. Massari, V. Sotte, R. Iacovelli, L. Burattini, D. Santini, R. Montironi, S. Cascinu, G. Principato, Computational analysis of the mutations in BAP1, PBRM1 and SETD2 genes reveals the impaired molecular processes in renal cell carcinoma. Oncotarget 6, 32161–32168 (2015)

    PubMed  PubMed Central  Google Scholar 

  69. F. Piva, M. Giulietti, L. Baldelli, B. Nardi, C. Bellantuono, T. Armeni, F. Saccucci, G. Principato, Bioinformatic analyses to select phenotype affecting polymorphisms in HTR2C gene. Humanist Psychol 26, 365–372 (2011)

    CAS  Google Scholar 

  70. F. Piva, M. Giulietti, B. Nardi, C. Bellantuono, G. Principato, An improved in silico selection of phenotype affecting polymorphisms in SLC6A4, HTR1A and HTR2A genes. Humanist Psychol 25, 153–161 (2010)

    CAS  Google Scholar 

  71. F. Bianchi, M. Raponi, F. Piva, A. Viel, I. Bearzi, E. Galizia, R. Bracci, L. Belvederesi, C. Loretelli, C. Brugiati, F. Corradini, D. Baralle, R. Cellerino, An intronic mutation in MLH1 associated with familial colon and breast cancer. Familial Cancer 10, 27–35 (2011)

    Article  CAS  PubMed  Google Scholar 

  72. B. Meder, C. Backes, J. Haas, P. Leidinger, C. Stahler, T. Grossmann, B. Vogel, K. Frese, E. Giannitsis, H.A. Katus, E. Meese, A. Keller, Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin Chem 60, 1200–1208 (2014)

    Article  CAS  PubMed  Google Scholar 

  73. H. Zhao, J. Shen, L. Medico, D. Wang, C.B. Ambrosone, S. Liu, A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 5, e13735 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  74. R. Duttagupta, R. Jiang, J. Gollub, R.C. Getts, K.W. Jones, Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One 6, e20769 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. J.N. Boeckel, C.E. Thome, D. Leistner, A.M. Zeiher, S. Fichtlscherer, S. Dimmeler, Heparin selectively affects the quantification of microRNAs in human blood samples. Clin Chem 59, 1125–1127 (2013)

    Article  CAS  PubMed  Google Scholar 

  76. S. Grasedieck, N. Scholer, M. Bommer, J.H. Niess, H. Tumani, A. Rouhi, J. Bloehdorn, P. Liebisch, D. Mertens, H. Dohner, C. Buske, C. Langer, F. Kuchenbauer, Impact of serum storage conditions on microRNA stability. Leukemia 26, 2414–2416 (2012)

    Article  CAS  PubMed  Google Scholar 

  77. G. Occhipinti, M. Giulietti, G. Principato, F. Piva, The choice of endogenous controls in exosomal microRNA assessments from biofluids. Tumour Biol 37, 11657–11665 (2016)

    Article  CAS  PubMed  Google Scholar 

  78. S.A. Melo, L.B. Luecke, C. Kahlert, A.F. Fernandez, S.T. Gammon, J. Kaye, V.S. LeBleu, E.A. Mittendorf, J. Weitz, N. Rahbari, C. Reissfelder, C. Pilarsky, M.F. Fraga, D. Piwnica-Worms, R. Kalluri, Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Giulietti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giulietti, M., Occhipinti, G., Principato, G. et al. Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis. Cell Oncol. 40, 181–192 (2017). https://doi.org/10.1007/s13402-017-0315-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-017-0315-y

Keywords

Navigation