Skip to main content
Log in

An Introduction to Quantum Plasmas

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Shielding effects in non-degenerate and degenerate plasmas are compared. A detailed derivation of the Wigner-Poisson system is provided for electrostatic quantum plasmas in which relativistic, spin, and collisional effects are not essential. A detailed derivation of a quantum hydrodynamic model starting from the Wigner-Poisson system is presented. The route for this derivation considers the eikonal decomposition of the one-body wavefunctions of the quantum statistical mixture. The merits and limitations of the resulting quantum hydrodynamic model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Haas, Quantum Plasmas: an Hydrodynamic Approach (Springer, New York, 2011)

    Book  Google Scholar 

  2. P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 83, 885 (2011)

    Article  ADS  Google Scholar 

  3. P.K. Shukla, B. Eliasson, Phys. Uspekhi 53, 55 (2010)

    Article  ADS  Google Scholar 

  4. G. Manfredi, Fields Inst. Commun. 46, 263 (2005)

    MathSciNet  Google Scholar 

  5. G. Chabrier, F. Douchin, A.Y. Potekhin, J. Phys.: Condens. Matter 14, 9133 (2002)

    Article  ADS  Google Scholar 

  6. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  7. P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations (Springer, Wien, 1990)

    Book  MATH  Google Scholar 

  8. A. Jüngel, Transport Equations for Semiconductors (Springer, Berlin-Heidelberg, 2009)

    Book  Google Scholar 

  9. N. Crouseilles, P.A. Hervieux, G. Manfredi, Phys. Rev. B 78, 155412 (2008)

    Article  ADS  Google Scholar 

  10. S.H. Glenzer, R. Redmer, Rev. Mod. Phys. 81, 1625 (2009)

    Article  ADS  Google Scholar 

  11. F. Haas, G. Manfredi, M. Feix, Phys. Rev. E 62, 2763 (2000)

    Article  ADS  Google Scholar 

  12. G. Gregori, D.O. Gericke, Phys. Plasmas 16, 056306 (2009)

    Article  ADS  Google Scholar 

  13. S.R.A. Salinas, Introduction to Statistical Physics (Springer-Verlag, New York, 2001)

    MATH  Google Scholar 

  14. W.R. Frensley, Rev. Mod. Phys. 62, 745 (1990)

    Article  ADS  Google Scholar 

  15. M.S. Murillo, J. Phys. A: Math. Theor. 42, 214054 (2009)

    Article  ADS  Google Scholar 

  16. J. Friedel, Adv. Phys. 3, 446 (1954)

    Article  ADS  Google Scholar 

  17. J. Lindhard. Dan. Vidensk. Selsk., Mat. Fys. Medd. 28, 1 (1954)

    Google Scholar 

  18. M. Bonitz, D. Semkat, A. Filinov, V. Golubnychyi, D. Kremp, D.O. Gericke, M.S. Murillo, V. Filinov, V. Fortov, W. Hoyer, S.W. Koch, J. Phys. A: Math. Gen. 36, 5921 (2003)

    Article  ADS  Google Scholar 

  19. E. Wigner, Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  20. Y. Klimontovich, V.P. Silin, in Plasma Physics, ed. by J.E. Drummond (McGraw-Hill, New York, 1961), pp. 35–87

    Google Scholar 

  21. N.N. Bogoliubov, J. Exp. Theor. Phys. 16, 691 (1946)

    Google Scholar 

  22. M. Born, H.S. Green, Proc. Roy. Soc. A 188, 10 (1946)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. J.G. Kirkwood, J. Chem. Phys. 14, 180 (1946)

    Article  ADS  Google Scholar 

  24. J. Yvon, La Théorie Statistique des Fluides (Hermann, Paris, 1935)

    Google Scholar 

  25. M. Di Ventra, Electrical Transport in Nanoscale Systems (Cambridge, New York, 2008)

    Book  Google Scholar 

  26. H.J.W. Haug, A.P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, Berlin-Heidelberg, 2008)

    Google Scholar 

  27. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Non-Equilibrium Problems (Benjamin, New York, 1962)

    Google Scholar 

  28. M. Hillery, R.F. O’Connell, M.O. Scully, E.P. Wigner, Phys. Rep. 106, 121 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  29. N.C. Kluksdahl, A.M. Kriman, D.K. Ferry, C. Ringhofer, Phys. Rev. B. 39, 7720 (1989)

    Article  ADS  Google Scholar 

  30. G. Manfredi, F. Haas, Phys. Rev. B 64, 075316 (2001)

    Article  ADS  Google Scholar 

  31. S. Ali, H. Terças, and J.T. Mendonça, Phys. Rev. B 83, 153401 (2011)

    Article  ADS  Google Scholar 

  32. S. Ghosh, S. Dubey, R. Vanshpal, Phys. Lett. A 375, 43 (2010)

    Article  ADS  Google Scholar 

  33. F. Haas, G. Manfredi, P.K. Shukla, P.-A. Hervieux, Phys. Rev. B 80, 073301 (2009)

    Article  ADS  Google Scholar 

  34. J.L. López, Phys. Rev. E 69, 026110 (2004)

    Article  Google Scholar 

  35. P.K. Shukla, B.Eliasson, Phys. Rev. Lett. 100, 036801 (2008)

    Article  ADS  Google Scholar 

  36. L. Wei, Y.N. Wang, Phys. Rev. B 75, 193407 (2007)

    Article  ADS  Google Scholar 

  37. F. Haas, Phys. Plasmas 12, 062117 (2005)

    Article  Google Scholar 

  38. F. Haas, M. Marklund, G. Brodin, J. Zamanian, Phys. Lett. A 374, 481 (2010)

    Article  ADS  Google Scholar 

  39. P.A. Markowich, Math. Meth. Appl. Sci. 11, 459 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Madelung, Phys. 40, 332 (1926)

    Google Scholar 

  41. D. Bohm, B.J. Hiley, The Undivided Universe: an Ontological Interpretation of Quantum Theory (Routledge, London, 1993)

    Google Scholar 

  42. I. Gasser, C. Lin, P.A. Markowich, Taiwan. J. Math. 4, 501 (2000)

    MathSciNet  MATH  Google Scholar 

  43. C.L. Gardner, SIAM J. Appl. Math. 54, 409 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. M.G. Ancona, H.F. Tiersten, Phys. Rev. B. 35, 7959 (1987)

    Article  ADS  Google Scholar 

  45. M.G., G.J. Iafrate, Phys. Rev. B 39, 9536 (1989)

    Article  ADS  Google Scholar 

  46. C.L. Gardner, C. Ringhofer, Phys. Rev. E 393, 157 (1996)

    Article  ADS  Google Scholar 

  47. P. Degond, F. Méhats, C. Ringhofer, J. Stat. Phys. 118, 625 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. M. Ancona. COMPEL 6, 11 (1987)

    Article  Google Scholar 

  49. A. Jüngel, S. Tang, Appl. Num. Math. 56, 899 (2006)

    Article  MATH  Google Scholar 

  50. G.K. Chan, A.J. Cohen, N.C. Handy, J. Chem. Phys. 114, 631 (2001)

    Article  ADS  Google Scholar 

  51. L.H. Thomas, Proc. Cambridge Philos. Soc. 26, 376 (1930)

    Article  Google Scholar 

  52. E. Fermi, Z. Phys. 48, 73 (1928)

    Article  ADS  Google Scholar 

  53. P.A.M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930)

    Article  ADS  MATH  Google Scholar 

  54. C.F. Weizsäcker, Z. Phys. 96, 431 (1935)

    Article  ADS  MATH  Google Scholar 

  55. G. Manfredi, M.R. Feix, Phys. Rev. E 53, 6460 (1996)

    Article  ADS  Google Scholar 

  56. D.F. Dubois, Ann. Phys. 7, 174 (1959)

    Article  ADS  MATH  Google Scholar 

  57. M. Gellmann, K.A. Brueckner, Phys. Rev. 106, 364 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  58. K. Sawada, Phys. Rev. 106, 372 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. D. Pines, P. Nozières, The Theory of Quantum Liquids (New York, W.A. Benjamin, 1966)

  60. M. Marklund, and G. Brodin, Phys. Rev. Lett. 98, 025001 (2007)

    Article  ADS  Google Scholar 

  61. G. Brodin, and M. Marklund, New J. Phys. 9, 277 (2007)

    Article  Google Scholar 

  62. P.K. Shukla, Nature Phys. 5, 92 (2009)

    Article  ADS  Google Scholar 

  63. G. Brodin, A.P. Misra, and M. Marklund, Phys. Rev. Lett. 105, 105004 (2010)

    Article  ADS  Google Scholar 

  64. J. Zamanian, M. Marklund, and G. Brodin, New J. Phys. 12, 043019 (2010)

    Article  MathSciNet  Google Scholar 

  65. D.B. Melrose. Quantum Plasmadynamics: Unmagnetized Plasmas, Lecture Notes in Physics Vol. 735 (Springer, New York, 2008)

    Book  MATH  Google Scholar 

  66. J. Zhu, and P. Ji, Phys. Rev. E 81, 036406 (2010)

    Article  ADS  Google Scholar 

  67. F.A. Asenjo, V. Munoz, J.A. Valdivia, S.M. Mahajan, Phys. Plasmas 18, 012107 (2011)

    Article  ADS  Google Scholar 

  68. J.T. Mendonça, Phys. Plasmas 18, 062101 (2011)

    Article  Google Scholar 

  69. G.M. Gusev, A.A. Quivy, T.E. Laman, J.R. Leite, A.K. Bakarov, A.I. Topov, O. Estibals, J.C. Portal, Phys. Rev. B 65, 205316 (2002)

    Article  ADS  Google Scholar 

  70. M. Santer, B. Mehlig, M. Moseler, Phys. Rev. Lett. 89, 266801 (2002)

    Article  ADS  Google Scholar 

  71. A. Arnold, J.L. López, P. Markowich, J. Soler, Rev. Mat. Iberoamericana 20, 771 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, F. An Introduction to Quantum Plasmas. Braz J Phys 41, 349–363 (2011). https://doi.org/10.1007/s13538-011-0043-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-011-0043-0

Keywords

Navigation