Skip to main content
Log in

Effect of Temperature Anisotropy on Various Modes and Instabilities for a Magnetized Non-relativistic Bi-Maxwellian Plasma

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Using kinetic theory for homogeneous collisionless magnetized plasmas, we present an extended review of the plasma waves and instabilities and discuss the anisotropic response of generalized relativistic dielectric tensor and Onsager symmetry properties for arbitrary distribution functions. In general, we observe that for such plasmas only those modes whose magnetic-field perturbations are perpendicular to the ambient magnetic field, i.e., B 1 \(\bot \) B 0, are effected by the anisotropy. However, in oblique propagation all modes do show such anisotropic effects. Considering the non-relativistic bi-Maxwellian distribution and studying the relevant components of the general dielectric tensor under appropriate conditions, we derive the dispersion relations for various modes and instabilities. We show that only the electromagnetic R- and L- waves, those derived from them (i.e., the whistler mode, pure Alfvén mode, firehose instability, and whistler instability), and the O-mode are affected by thermal anisotropies, since they satisfy the required condition \(\mathbf{B}_{1}\bot \mathbf{B}_{0}\). By contrast, the perpendicularly propagating X-mode and the modes derived from it (the pure transverse X-mode and Bernstein mode) show no such effect. In general, we note that the thermal anisotropy modifies the parallel propagating modes via the parallel acoustic effect, while it modifies the perpendicular propagating modes via the Larmor-radius effect. In oblique propagation for kinetic Alfvén waves, the thermal anisotropy affects the kinetic regime more than it affects the inertial regime. The generalized fast mode exhibits two distinct acoustic effects, one in the direction parallel to the ambient magnetic field and the other in the direction perpendicular to it. In the fast-mode instability, the magneto-sonic wave causes suppression of the firehose instability. We discuss all these propagation characteristics and present graphic illustrations. The threshold conditions for different instabilities are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, vol. 1 (Plenum Press, New York, 1984)

    Google Scholar 

  2. S. Ichimaru, Basic Principles of Plasma Physics (Addison-Wesley Press, Tokyo, 1973)

    Google Scholar 

  3. M. Brambilla, Kinetic Theory of Plasma Waves Homogeneoues plasmas (Oxford University Press, New York, 1998)

    Google Scholar 

  4. R. Gaelzer, L.F. Ziebell, R.S. Schneider., Braz. J. Phys. 34, 1224 (2004)

    Article  Google Scholar 

  5. L.F. Ziebell, R.S. Schneider, Braz. J. Phys. 34, 1211 (2004)

    Article  Google Scholar 

  6. M. Miyamoto, Plasma Physics for Nuclear Fusion (MIT Press, New York, 1980)

    Google Scholar 

  7. A.F. Alexandrov, L.S. Bogdankevich, A.A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag Berlin Heidelberg Press, New York, 1984)

    Book  Google Scholar 

  8. D.C. Montgomery, D.A. Tidman, Plasma Kinetic Theory (McGraw-Hill Press, New York, 1964)

    Google Scholar 

  9. R.L. Mace, Phys. Scr. T63, 207 (1996)

    Article  ADS  Google Scholar 

  10. A. Bret, M.C. Firpo, C. Deutsch, Phys. Rev. E. 70, 046401 (2004)

    Article  ADS  Google Scholar 

  11. M.W. Verdon, D.B. Melrose, Phys. Rev. E. 77, 046403 (2008)

    Article  ADS  Google Scholar 

  12. G. Noci, J.L. Kohl, G.L. Withbroe, ApJ. 315, 706 (1987)

    Article  ADS  Google Scholar 

  13. M. Pagel, Q.D. Atkinson, A. Meade, Nature 449, 717 (2007)

    Article  ADS  Google Scholar 

  14. R.W. Schunk, D.S. Watkins, J. Geophys. Res. 86, 91 (1981)

    Article  ADS  Google Scholar 

  15. W. Masood, S.J. Schwartz, J. Geophys. Res. 113, A01216 (2008)

    Article  Google Scholar 

  16. C. Cremaschini, J.C. Miller, M. Tessarotto, Phys. Plasmas 17, 072902 (2010)

    Article  Google Scholar 

  17. S.S.A. Gillani, N.L. Tsintsadze, H.A. Shah, M. Razzaq, Phys. Plasmas 17, 083103 (2010)

    Article  Google Scholar 

  18. A. Bret, C. Deutsch, Phys. Plasmas 13, 022110 (2006)

    Article  MathSciNet  Google Scholar 

  19. A. Sid, A. Ghezal, A. Soudani, M. Bekhouche, Plasma Fusion Res. 5, 007 (2010)

    Article  ADS  Google Scholar 

  20. R.P. Singhal, A.K. Tripathi, Ann. Geophys. 24, 1705 (2006)

    Article  ADS  Google Scholar 

  21. E.A. MacDonald, M.H. Denton, M.F. Thomson, S.P. Gary, J. Atmos. Sol.-terr. Phys. 70, 1789 (2008)

    Article  ADS  Google Scholar 

  22. F. Xiao, Q. Zhou, H. He, L. Tang, Plasma Phys. Control. Fusion 48, 1437 (2006)

    Article  ADS  Google Scholar 

  23. P. Kumar, V.K. Tripathi, Phys. Plasmas 15, 052107 (2008)

    Article  ADS  Google Scholar 

  24. R.L. Stenzel, J.M. Urrutia, K.D. Strohmaier, Plasma Phys. Control. Fusion. 50, 074009 (2008)

    Article  Google Scholar 

  25. E.S. Weibel, Phys. Rev. Lett. 2, 83 (1959)

    Article  ADS  Google Scholar 

  26. P.H. Yoon, Phys. Fluids B. 1, 1336 (1989)

    Article  ADS  Google Scholar 

  27. P.H. Yoon, Phys. Plasmas 14, 024504 (2007)

    Article  Google Scholar 

  28. Y. Sentoku, K. Mima, Z.M. Sheng, P. Kaw, K. Nishihara, K. Nishikawa, Phys. Rev. E. 65, 046408 (2002)

    Article  ADS  Google Scholar 

  29. S. Zaheer, G. Murtaza, Phys. Plasmas 14, 022108 (2007)

    Article  Google Scholar 

  30. S. Zaheer, G. Murtaza, Phys. Plasmas 14, 072106 (2007)

    Article  Google Scholar 

  31. A. Stockem, M. Lazar, Phys. Plasmas 15, 014501 (2008)

    Article  ADS  Google Scholar 

  32. F. Haas, M. Lazar, Phys. Rev. E. 77, 046404 (2008)

    Article  ADS  Google Scholar 

  33. C. Thaury, P. Mora, A. Héron, J.C. Adam, T.M. Antonsen, Phys. Rev. E. 82, 026408 (2010)

    Article  ADS  Google Scholar 

  34. S. Zaheer and G. Murtaza, Phys. Scr. 81, (2010)

  35. A. Achterberg, J. Wiersma, Astron. Astrophys. 475, 1 (2007)

    Article  ADS  MATH  Google Scholar 

  36. U. Schaefer-Rolffs, R.C. Tautz, Phys. Plasmas 15, 062105 (2008)

    Article  Google Scholar 

  37. K.H. Lee, Y. Omura, L.C. Lee, C.S. Wu, Phys. Rev. Lett. 103, 105101 (2009)

    Article  ADS  Google Scholar 

  38. W. Masood, S.J. Schwartz, J. Geophys. Res. 113, A01216 (2008)

    Article  Google Scholar 

  39. T.B. Yang, Y. Gallant, J. Arons, A.B. Langdon, Phys. Fluids B, 5, 3369 (1993)

    Article  ADS  Google Scholar 

  40. R.C. Davidson, I. Kaganovich, E.A. Startsev, H. Qin, M. Dorf, A. Sefkow, D.R. Welch, D.V. Rose, S.M. Lund, Nucl. Instrum. Methods Phys. Res. A577, 70 (2007)

    ADS  Google Scholar 

  41. E.A. Startsev, R.C. Davidson, Phys. Plasmas 10, 4829 (2003)

    Article  ADS  Google Scholar 

  42. M. Lazar, R. Schlickeiser, S. Poedts, Phys. Plasmas 16, 012106 (2009)

    Article  ADS  Google Scholar 

  43. H. Alfvén, Nature (London) 150, 405 (1942)

    Article  ADS  Google Scholar 

  44. L. Ofman, Astrophys. J. 568, L135 (2002)

    Article  ADS  Google Scholar 

  45. B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, C.J. Schrijver, A.M. Title, R.A. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, S. Nagata, Science 318, 1574 (2007)

    Article  ADS  Google Scholar 

  46. W.Gekelman, J. Geophys. Res. 104, 14417 (1999)

    Article  ADS  Google Scholar 

  47. R. Schlickeiser, M. Lazar, T. Skoda1, Phys. Plasmas 18, 012103 (2011)

    Article  ADS  Google Scholar 

  48. P.H. Yoon, Phys. Fluids B2, 842 (1990)

    ADS  Google Scholar 

  49. R. Schlickeiser, T. Skoda, Astrophys. J. 716, 1596 (2010)

    Article  ADS  Google Scholar 

  50. M. Lazar, S. Poedts, A. & A. 494, 311 (2009)

    ADS  MATH  Google Scholar 

  51. A. Hasegawa, C. Uberoi, The Alfvén Wave. DOE Critical Review Series—Advances in Fusion Science and Engineering (Technical Information Service, U.S. Department of Energy, Washington, D.C., 1982)

    Book  Google Scholar 

  52. M.F. Bashir, Z. Iqbal, I. Aslam, G. Murtaza, Phys. Plasmas 17, 102112 (2010)

    Article  ADS  Google Scholar 

  53. L. Chen, D.J. Wu, Phys. Plasmas 17, 062107 (2010)

    Article  Google Scholar 

  54. M.Y. Yu, P.K. Shukla, Phys. Fluids 21, 1457 (1978)

    Article  ADS  Google Scholar 

  55. P.M. Bellan, Adv. Space Res 28, 729 (2001)

    Article  ADS  Google Scholar 

  56. H. Saleem, S. Mahmood, Phys. Plasmas 10, 2612 (2003)

    Article  ADS  Google Scholar 

  57. G. Murtaza, M.Y. Yu, P.K Shukla, Phys. Rev. A. 30, 1533 (1984)

    Article  ADS  Google Scholar 

  58. R.L. Lysak, W. Lotko, J. Geophys. Res. 101, 5085 (1996)

    Article  ADS  Google Scholar 

  59. R.L. Lysak, M.K. Hudson, Geophys. Res. Lett. 6, 661 (1979)

    Article  ADS  Google Scholar 

  60. J.R. Wygant, A. Keiling, C.A. Cattell, R.L. Lysak, M. Temerin, F.S. Mozer, C.A. Kletzing, J.D. Scudder, V. Streltsov, W. Lotko, C.T. Russell, J. Geophys. Res. 107, 1201 (2002)

    Article  Google Scholar 

  61. A. Hirose, A. Ito, S.M. Mahajan, S. Ohsaki, Phys. Lett. A. 330, 474 (2004)

    Article  ADS  MATH  Google Scholar 

  62. R. Mishra, M.S Tiwari, Planet. Space Sci. 54, 188 (2006)

    Article  ADS  Google Scholar 

  63. G. Ahirwar, P. Varma, M.S. Tiwari, Ann. Geophys. 24, 1919 (2006)

    Article  ADS  Google Scholar 

  64. G. Ahirwar, P. Varma, M.S. Tiwari, Ann. Geophys. 24, 557 (2007)

    Article  ADS  Google Scholar 

  65. S.P. Duan, Z.Y. Li, Z.X. Liu, Planet. Space Sci. 53, 1167 (2005)

    Article  ADS  Google Scholar 

  66. K. Zubia, N. Rubab, H.A. Shah, M. Salimullah, G. Murtaza, Phys. Plasmas 14, 032105 (2007)

    Article  Google Scholar 

  67. N. Rubab, N.V. Erkaev, D. Langmayr, H.K. Biernat, Phys. Plasmas 17, 103704 (2010)

    Article  ADS  Google Scholar 

  68. N. Shukla, R. Mishra, P. Varma, M.S. Tiwari, Plasma Phys. Control. Fusion 50, 025001 (2008)

    Article  Google Scholar 

  69. M. Salimullah, M. Rosenberg, Phys. Lett. A. 254, 347 (1999)

    Article  ADS  Google Scholar 

  70. N. Shukla, P. Varma, M.S. Tiwari, Indian J. Pure Appl. Phys. 47, 350 (2009)

    Google Scholar 

  71. W. Gekelman, S. Vincena, B.V. Compernolle, G.J. Morales, J.E. Maggs, P. Pribyl, T.A. Carter, Phys. Plasmas 18, 055501 (2011)

    Article  ADS  Google Scholar 

  72. B.D. Fried, S.D. Conte, The Plasma Dispersion Function (Academic Press, New York, 1961)

    Google Scholar 

  73. S. Zaheer, G Murtaza, Phys. Scr. 77, 035503 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the anonymous Referee for making several useful suggestions to improve the quality of this review paper and to the Office of the External Activities of the ICTP, Trieste, Italy, for providing partial financial support to Salam Chair, at GC University Lahore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Fraz Bashir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashir, M.F., Murtaza, G. Effect of Temperature Anisotropy on Various Modes and Instabilities for a Magnetized Non-relativistic Bi-Maxwellian Plasma. Braz J Phys 42, 487–504 (2012). https://doi.org/10.1007/s13538-012-0087-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-012-0087-9

Keywords

Navigation