Skip to main content
Log in

News and Views: Perspectives on Graphene and Other 2D Materials Research and Technology Investments

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

With the actual experimental realization of graphene samples, it became possible not only to exploit the special physical properties of graphene but also to exploit its technological applications. As the field developed, the discovery of other 2D materials occurred and this opened up access to a plethora of combinations of a large variety of electrical, optical, mechanical, and chemical properties. Now there are large investments being made around the world to develop the graphene research area and to boost graphene use in technology. Here, we discuss current research and some future prospects for this area of layered nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science. 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  2. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiurrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano. 7(4), 2898–2926 (2013)

    Article  Google Scholar 

  3. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the klein paradox in graphene. Nat. Phys. 2(9), 620–625 (2006)

    Article  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Article  ADS  Google Scholar 

  5. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature. 438(7065), 201–204 (2005)

    Article  ADS  Google Scholar 

  6. P.R. Wallace, The band theory of graphite. Phys. Rev. 71(9), 622–634 (1947)

    Article  ADS  MATH  Google Scholar 

  7. M.S. Dresselhaus, Fifty years in studying carbon-based materials. Phys. Scr. 2012(T146), 014002 (2012)

    Article  Google Scholar 

  8. M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite. Adv. Phys. 30(2), 139–326 (1981)

    Article  ADS  Google Scholar 

  9. Proceedings of the Second Conference on Intercalation Compounds of Graphite, vol. 2. Sections 6 and 7, May 19–23 (Provincetown, 1980)

  10. M.S. Dresselhaus, G. Dresselhaus, K. Sugiharam, I.L. Spain, H.A. Goldberg, M. Cardona. Graphite Fibers and Filaments (Springer-Verlag, Berlin, 1988)

    Book  Google Scholar 

  11. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Academic, 1996)

  12. R. Saito, G. Dresselhaus, M.S. Dresselhaus. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998)

  13. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  14. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351–355 (2008)

    Article  ADS  Google Scholar 

  15. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, Ph. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966), 662–662 (2010)

    Article  ADS  Google Scholar 

  16. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics. 4(9), 611–622 (2010)

    Article  ADS  Google Scholar 

  17. Graphene Flagship, http://www.graphene-flagship.eu/GF/index.php. Accessed 29 July 2013

  18. B.H. Hong, http://www.grapheneconf.com/ARCHIVE12/Files/Presentations/Graphene2012_Hong_GF.pdf. Accessed 29 July 2013

  19. Engineering and Physical Sciences Research Council, http://www.epsrc.ac.uk/newsevents/news/2012/Pages/graphenehub.aspxhttp://www.epsrc.ac.uk/newsevents/news/2012/Pages/graphenehub.aspx. Accessed 29 July 2013

  20. Graphene Research Centre, http://graphene.nus.edu.sg/. Accessed 29 July 2013

  21. INCT de Nanomateriais de Carbono, http://www.nanocarbono.net/index.php. Accessed 29 July 2013

  22. Inmetro–Instituto Nacional de Metrologia, Qualidade e Tecnologia, http://www.inmetro.gov.br/. Accessed 30 July 2013

  23. MackGrafe Graphene and Nano-Materials Research Center, http://www.mackenzie.br/mackgrafe.html?&no_cache=1. Accessed 29 July 2013

  24. Tecnologia e Inovação MCTI Ministério da Ciência, http://www.mcti.gov.br/index.php/content/view/9228/Paises_com_maior_numero_de_artigos_publicados_em_periodicos_cientificos_indexados_pela_ThomsonISI_2009.html. Accessed 29 July 2013

  25. Organization for Economic Co-operation and Development, http://stats.oecd.org/Index.aspx?DataSetCode=PATS_IPC. Accessed 29 July 2013

  26. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013)

    Article  Google Scholar 

  27. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  ADS  Google Scholar 

  28. J.A. Wilson, F.J. Di Salvo, S. Mahajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24(2), 117–201 (1975)

    Article  ADS  Google Scholar 

  29. B. Sipos, A.F. Kusmartseva, A. Akrap, H. Berger, L. Forró, E. Tutiš, From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7(12), 960–965 (2008)

    Article  ADS  Google Scholar 

  30. W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, J.D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X= S, Se, Te). Phys. Rev. B. 85(3), 033305 (2012)

    Article  ADS  Google Scholar 

  31. K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7(8), 494–498 (2012)

    Article  ADS  Google Scholar 

  32. L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B. 47(19), 12727 (1993)

    Article  ADS  Google Scholar 

  33. L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B. 47(24), 16631–16634 (1993)

    Article  ADS  Google Scholar 

  34. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8, 471–473 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Ado Jorio of the UFMG Physics Department for valuable discussions. J.R.S. acknowledges the financial support from CNPq grant 551953/2011-0 and NSF grant DMR-1004147. M.S.D. acknowledges financial support from NSF grant DMR-1004147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ribeiro-Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro-Soares, J., Dresselhaus, M.S. News and Views: Perspectives on Graphene and Other 2D Materials Research and Technology Investments. Braz J Phys 44, 278–282 (2014). https://doi.org/10.1007/s13538-013-0156-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-013-0156-8

Keywords

Navigation