Skip to main content
Log in

Recent Advances of Epitaxial BiVO4 Thin Film: Preparation and Physical and Photoelectrochemical Properties

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Semiconductor photocatalysis has two important applications: environmental remediation and H2 production. Bismuth vanadate has attracted great interests as an ideal candidate for use as high-performance photocatalysts for visible light-driven water splitting and photoanode in photoelectrochemical cells. Single crystal film is invaluable to deepen the fundamental understanding of materials. The object of this article was to provide a brief review on the advances in the preparation of epitaxial BiVO4 thin film, the physical and photoelectrochemical properties. The epitaxial BiVO4 thin film could be fabricated on (001) yttria-stabilized cubic zirconia or SrTiO3(001) by molecular beam epitaxy, chemical vapor deposition, and, pulsed laser deposition. Three crystal structures, namely, monoclinic scheelite, monoclinic clinobisvanite, and orthorhombic, were mentioned in the literatures. The optical band gap was reported to be 2.5~2.7 eV for a direct transition. The highest photocurrent of 4.83 mA cm−2at 1.23 V vs. the RHE was obtained at the sample with Lu2O3 as a hole blocking layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Z.F. Huang, L. Pan, J.J. Zou, X. Zhang, L. Wang, Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale 6(23), 14044–14063 (2014)

    ADS  Google Scholar 

  2. I.D. Sharp, J.K. Cooper, F.M. Toma, R. Buonsanti, ACS Energy Lett 2(1), 139–150 (2017)

    Google Scholar 

  3. H.L. Tan, R. Amal, Y.H. Ng, J Mater Chem A 5(32), 16498–16521 (2017)

    Google Scholar 

  4. K. Tolod, S. Hernández, N. Russo, Catalysts 7(12), 13 (2017)

    Google Scholar 

  5. A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, Applied Catalysis A: General 555, 47–74 (2018)

    Google Scholar 

  6. O. Monfort, G. Plesch, Bismuth vanadate-based semiconductor photocatalysts: a short critical review on the efficiency and the mechanism of photodegradation of organic pollutants. Environ Sci Pollut Res Int 25(20), 19362–19379 (2018)

    Google Scholar 

  7. F.H. Saadi, N.S. Lewis, E.W. McFarland, Energy Environ Sci 11, 469–475 (2018)

    Google Scholar 

  8. J.K. Stolarczyk, S. Bhattacharyya, L. Polavarapu, J. Feldmann, ACS Catal 8(4), 3602–3635 (2018)

    Google Scholar 

  9. S. Zhu, D. Wang, Adv Energy Mater 7(23), 1700841 (2017)

    Google Scholar 

  10. X. Meng, L. Liu, S. Ouyang, H. Xu, D. Wang, N. Zhao, J. Ye, Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv Mater 28(32), 6781–6803 (2016)

    Google Scholar 

  11. J. Su, Y. Wei, L. Vayssieres, J. Phys, Chem. Lett. 8, 5228–5238 (2017)

    Google Scholar 

  12. G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q. Lu, H.M. Cheng, Titanium dioxide crystals with tailored facets. Chem Rev 114(19), 9559–9612 (2014)

    Google Scholar 

  13. S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Energy Environ. Sci. 8(3), 731–759 (2015)

    Google Scholar 

  14. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43(15), 5234–5244 (2014)

    Google Scholar 

  15. A. Kudo, K. Ueda, H. Kato, I. Mikami, Catalysis Letters 53(3-4), 229–230 (1998)

    Google Scholar 

  16. Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, K. Domen, Adv Energy Mater 6(2), 1501645 (2016)

    Google Scholar 

  17. K. Sivula, R. van de Krol, Nat. Rev. Mater. 1(2), 15010 (2016)

    ADS  Google Scholar 

  18. A. Kudo, K. Omori, H. Kato, J. Am, Chem. Soc. 121, 11459–11467 (1999)

    Google Scholar 

  19. B.J. Trześniewski, I.A. Digdaya, T. Nagaki, S. Ravishankar, I. Herraiz-Cardona, D.A. Vermaas, A. Longo, S. Gimenez, W.A. Smith, Energy Environ. Sci. 10(6), 1517–1529 (2017)

    Google Scholar 

  20. D.K. Lee, K.-S. Choi, Nat. Energy 3(1), 53–60 (2018)

    ADS  Google Scholar 

  21. T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990–994 (2014)

    ADS  Google Scholar 

  22. W.J. Luo, Z.S. Yang, Z.S. Li, J.Y. Zhang, J.G. Liu, Z.Y. Zhao, Z.Q. Wang, S.C. Yan, T. Yu, Z.G. Zou, Energy Environ. Sci. 4(10), 4046–4051 (2011)

    Google Scholar 

  23. Y.C. Qiu, W. Liu, W. Chen, W. Chen, G.M. Zhou, P.C. Hsu, R.F. Zhang, Z. Liang, S.S. Fan, Y.G. Zhang, Y. Cui, Sci. Adv. 2(6), 8 (2016)

    Google Scholar 

  24. Y. Park, K.J. McDonald, K.S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42(6), 2321–2337 (2013)

    Google Scholar 

  25. G.Q. Li, Y. Bai, W.F. Zhang, Mater Chem Phys 136(2-3), 930–934 (2012)

    Google Scholar 

  26. R. Munprom, P.A. Salvador, G.S. Rohrer, J. Mater, Chem. A 3(5), 2370–2377 (2015)

    Google Scholar 

  27. S. Sun, W. Wang, D. Li, L. Zhang, D. Jiang, ACS Catal. 4(10), 3498–3503 (2014)

    Google Scholar 

  28. X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, J. Am, Chem. Soc. 137(26), 8356–8359 (2015)

    Google Scholar 

  29. C.W. Kim, Y.S. Son, M.J. Kang, D.Y. Kim, Y.S. Kang, Adv. Energy Mater. 6(4), 1501754 (2016)

    Google Scholar 

  30. H.L. Tan, X. Wen, R. Amal, Y.H. Ng, J. Phys, Chem. Lett. 7(7), 1400–1405 (2016)

    Google Scholar 

  31. J.-W. Jang, D. Friedrich, S. Müller, M. Lamers, H. Hempel, S. Lardhi, Z. Cao, M. Harb, L. Cavallo, R. Heller, R. Eichberger, R. van de Krol, F.F. Abdi, Adv. Energy Mater. 7(22), 1701536 (2017)

    Google Scholar 

  32. Y. Wei, J. Su, X. Wan, L. Guo, L. Vayssieres, Nano Research 9(6), 1561–1569 (2016)

    Google Scholar 

  33. T. Tachikawa, T. Ochi, Y. Kobori, ACS Catal. 6(4), 2250–2256 (2016)

    Google Scholar 

  34. S.M. Thalluri, M. Hussain, G. Saracco, J. Barber, N. Russo, Ind. Eng. Chem. Res. 53(7), 2640–2646 (2014)

    Google Scholar 

  35. C. Zhou, S. Wang, Z. Zhao, Z. Shi, S. Yan, Z. Zou, Adv Funct Mater, 1801214 (2018)

  36. G. Li, T. Varga, P. Yan, Z. Wang, C. Wang, S.A. Chambers, Y. Du, Phys. Chem. Chem. Phys. 17, 15073–15462 (2015)

    Google Scholar 

  37. G.Q. Li, Z.G. Yi, H.T. Wang, C.H. Jia, W.F. Zhang, Appl. Catal. B: Environ. 158-159, 280–285 (2014)

    Google Scholar 

  38. G.Q. Li, Z.G. Yi, Y. Bai, W.F. Zhang, H.T. Zhang, Dalton T. 41, 10194–10198 (2012)

    Google Scholar 

  39. K.H.L. Zhang, G. Li, S.R. Spurgeon, L. Wang, P. Yan, Z. Wang, M. Gu, T. Varga, M.E. Bowden, Z. Zhu, C. Wang, Y. Du, Creation and ordering of oxygen vacancies at WO<sub>3-δ</sub> and Perovskite interfaces. ACS Appl Mater Interfaces 10(20), 17480–17486 (2018)

    Google Scholar 

  40. S. Stoughton, M. Showak, Q. Mao, P. Koirala, D.A. Hillsberry, S. Sallis, L.F. Kourkoutis, K. Nguyen, L.F.J. Piper, D.A. Tenne, N.J. Podraza, D.A. Muller, C. Adamo, D.G. Schlom, APL Mater. 1(4), 042112 (2013)

    ADS  Google Scholar 

  41. P.S. Archana, Z. Shan, S. Pan, A. Gupta, Int. J. Hydrogen Energ. 42(12), 8475–8485 (2017)

    Google Scholar 

  42. A.J.E. Rettie, S. Mozaffari, M.D. McDaniel, K.N. Pearson, J.G. Ekerdt, J.T. Markert, C.B. Mullins, J. Phys, Chem. C 118(46), 26543–26550 (2014)

    Google Scholar 

  43. C.N. Van, W.S. Chang, J.-W. Chen, K.-A. Tsai, W.-Y. Tzeng, Y.-C. Lin, H.-H. Kuo, H.-J. Liu, K.-D. Chang, W.-C. Chou, C.-L. Wu, Y.-C. Chen, C.-W. Luo, Y.-J. Hsu, Y.-H. Chu, Nano Energy 15, 625–633 (2015)

    Google Scholar 

  44. A. Chaudhuri, L. Mandal, X. Chi, M. Yang, M.C. Scott, M. Motapothula, X.J. Yu, P. Yang, Y. Shao-Horn, T. Venkatesan, A.T.S. Wee, A. Rusydi, Physical Review B 97(19), 195150 (2018)

    ADS  Google Scholar 

  45. J. Song, J. Cha, M.G. Lee, H.W. Jeong, S. Seo, J.A. Yoo, T.L. Kim, J. Lee, H. No, D.H. Kim, S.Y. Jeong, H. An, B.H. Lee, C.W. Bark, H. Park, H.W. Jang, S. Lee, J. Mater, Chem. A 5(35), 18831–18838 (2017)

    Google Scholar 

  46. W. Zhang, D. Yan, X. Tong, M. Liu, Adv. Funct. Mater. 28(10), 1705512 (2018)

    Google Scholar 

  47. G. Li, S. Kou, F. Zhang, W. Zhang, H. Guo, Cryst Eng Comm 20, 6950 (2018)

    Google Scholar 

  48. J. Song, M.J. Seo, T.H. Lee, Y.-R. Jo, J. Lee, T.L. Kim, S.-Y. Kim, S.-M. Kim, S.Y. Jeong, H. An, S. Kim, B.H. Lee, D. Lee, H.W. Jang, B.-J. Kim, S. Lee, ACS Catal. 8(7), 5952–5962 (2018)

    Google Scholar 

  49. J. Song, K.S. Choi, M.J. Seo, Y.-R. Jo, J. Lee, T.L. Kim, S.Y. Jeong, H. An, H.W. Jang, B.-J. Kim, C. Jeon, S. Lee, Chem Mater 30(16), 5673–5681 (2018)

    Google Scholar 

  50. C.N. Van, T.H. Do, J.-W. Chen, W.-Y. Tzeng, K.-A. Tsai, H. Song, H.-J. Liu, Y.-C. Lin, Y.-C. Chen, C.-L. Wu, C.-W. Luo, W.-C. Chou, R. Huang, Y.-J. Hsu, Y.-H. Chu, Npg Asia Mater 9(3), e357 (2017)

    Google Scholar 

  51. H. Song, C. Li, C.N. Van, H.-J. Liu, R. Qi, R. Huang, Y.-H. Chu, C.-G. Duan, J. Mater, Res. 32(14), 2790–2799 (2017)

    Google Scholar 

  52. H. Song, C. Li, C.N. Van, W. Dong, R. Qi, Y. Zhang, R. Huang, Y.-H. Chu, C.-G. Duan, J Appl Phys 122(17), 175301 (2017)

    ADS  Google Scholar 

  53. H. Song, C. Li, C. Nguyen, V.W. Dong, R. Qi, Y. Zhang, R. Huang, Y.-H. Chu, C.-G. Duan, J Appl Phys 123(8), 085305 (2018)

    ADS  Google Scholar 

  54. W. Zhang, D. Yan, J. Li, Q. Wu, J. Cen, L. Zhang, A. Orlov, H. Xin, J. Tao, M. Liu, Chem Mater 30(5), 1677–1685 (2018)

    Google Scholar 

  55. W. Zhang, F. Wu, J. Li, D. Yan, J. Tao, Y. Ping, M. Liu, ACS Energy Lett 3(9), 2232–2239 (2018)

    Google Scholar 

  56. G. Li, Q. Shen, Z. Yang, S. Kou, F. Zhang, W. Zhang, H. Guo, Y. Du, Appl Catal B Environ 248, 115–119 (2019)

    Google Scholar 

  57. S.Y. Jeong, K.S. Choi, H.M. Shin, T.L. Kim, J. Song, S. Yoon, H.W. Jang, M.H. Yoon, C. Jeon, J. Lee, S. Lee, ACS Appl Mater Interfaces 9(1), 505–512 (2017)

    Google Scholar 

  58. J.K. Cooper, S. Gul, F.M. Toma, L. Chen, Y.-S. Liu, J. Guo, J.W. Ager, J. Yano, I.D. Sharp, J. Phys, Chem C 119(6), 2969–2974 (2015)

    Google Scholar 

  59. H.S. Han, S. Shin, D.H. Kim, I.J. Park, J.S. Kim, P.-S. Huang, J.-K. Lee, I.S. Cho, X. Zheng, Energy Environ Sci 11(5), 1299–1306 (2018)

    Google Scholar 

  60. A.J.E. Rettie, H.C. Lee, L.G. Marshall, J.F. Lin, C. Capan, J. Lindemuth, J.S. McCloy, J.S. Zhou, A.J. Bard, C.B. Mullins, J. Am, Chem Soc 135(30), 11389–11396 (2013)

    Google Scholar 

Download references

Funding

This work was supported by Education Department of Henan Province, China (17HASTIT014). Y. Zhang revised English of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Li.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, G. Recent Advances of Epitaxial BiVO4 Thin Film: Preparation and Physical and Photoelectrochemical Properties. Braz J Phys 50, 185–191 (2020). https://doi.org/10.1007/s13538-019-00730-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00730-0

Keywords

Navigation