Skip to main content

Advertisement

Log in

Analysis of Wettability Characteristics in the Absence of the Electric Field and Under HVDC using Designed and Implemented an Experimental Platform for Contact Angle Measurement

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, the wettability characteristics of Poly (methyl methacrylate) (PMMA) dielectric material which is used in high voltage applications and outdoor electrical applications in the presence and absence of the electric field was investigated. Saltwater droplets with a conductivity of 135.9 mS/cm were dropped onto the surface of a 5-mm thick PMMA dielectric material placed between two aluminum plane electrodes with a distance of 10 mm between them, and then 10 kV was applied between two aluminum electrodes. In the developed and implemented experimental platform, contact angle measurements were carried out using image processing techniques to interpret the wettability behavior of dielectric materials in the absence of the electric field and under HVDC. Wettability is one of the concepts used in the analysis of surface properties of materials and encountered in many engineering and science fields. Within the scope of this study, it is aimed to observe and analyze the correlation between the wettability characteristics, droplet shape, and contact angle under an electric field which has an important place under the topic of materials in science and engineering. Experimental results show that the electric field and the droplet liquid properties affect the contact angle and droplet shape. It was observed that the contact angle values decreased in the presence of the electric field and the apex of the droplet shape becomes more acute under the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

taken from the experiment environment for PMMA sample surface; a electric field applied between two electrodes: 0 kV/mm and b electric field applied between two electrodes: 1 kV/mm

Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. W. Bao, X. Liang, Y. Liu, Y. Gao, J. Wang, IEEE Trans. Dielectr. Electr. Insul. 24(5), 2911–2919 (2017). https://doi.org/10.1109/TDEI.2017.006774

    Article  Google Scholar 

  2. Z. Fang, Z. Ding, T. Shao, C. Zhang, IEEE Trans. Dielectr. Electr. Insul. 23(4), 2288–2293 (2016). https://doi.org/10.1109/TDEI.2016.7556505

    Article  Google Scholar 

  3. A. Hedir, M. Moudoud, N. Benamrouche, F. Bellabas, J. Electr. Eng. 17(2), 9 (2017)

    Google Scholar 

  4. Z. Yan, X. Liang, Y. Gao, Y. Liu, IEEE Trans. Dielectr. Electr. Insul. 23(6), 3531–3538 (2016). https://doi.org/10.1109/TDEI.2016.005962

    Article  Google Scholar 

  5. C. Li, J. He, J. Hu, IEEE Trans. Dielectr. Electr. Insul. 23(5), 3071–3077 (2016). https://doi.org/10.1109/TDEI.2016.7736871

    Article  Google Scholar 

  6. Z. Xu, IEEE Trans. Dielectr. Electr. Insul. 20(5), 1832–1835 (2013). https://doi.org/10.1109/TDEI.2013.6633714

    Article  Google Scholar 

  7. Y. Gao, X. Liang, W. Bao, S. Li, C. Wu, Y. Liu, Y. Cai, IEEE Trans. Dielectr. Electr. Insul. 24(6), 3594–3602 (2017). https://doi.org/10.1109/TDEI.2017.006891

    Article  Google Scholar 

  8. S. Park, J. Kim, C.H. Park, RSC Adv. 6(51), 45884–45893 (2016). https://doi.org/10.1039/C5RA27281E

    Article  ADS  Google Scholar 

  9. Z. Altangerel, B. Purev-Ochir, A. Ganzorig, T. Tsagaantsooj, G. Lkhamsuren, A. Choisuren, G. Chimed, Surf. Interfaces 19, 100533 (2020). https://doi.org/10.1016/j.surfin.2020.100533

    Article  Google Scholar 

  10. P. Chauhan, A. Kumar, B. Bhushan, J. Colloid Interface Sci. 535, 66–74 (2019). https://doi.org/10.1016/j.jcis.2018.09.087

    Article  ADS  Google Scholar 

  11. A.R. Vázquez-Velázquez, M.A. Velasco-Soto, S.A. Pérez-García, L. Licea-Jiménez, Nanomaterials 8(6), 369 (2018). https://doi.org/10.3390/nano8060369

    Article  Google Scholar 

  12. M.S. Hosseini, M.T. Sadeghi, M. Khazaei, Surf. Coat. Technol. 326, 79–86 (2017). https://doi.org/10.1016/j.surfcoat.2017.07.032

    Article  Google Scholar 

  13. D. Patil, S. Aravindan, R. Sarathi, P.V. Rao, Surf. Eng. 37(3), 308–317 (2020). https://doi.org/10.1080/02670844.2020.1780673

    Article  Google Scholar 

  14. J. Li, Y. Wei, Z. Huang, F. Wang, X. Yan, Z. Wu, Appl. Surf. Sci. 403, 133–140 (2017). https://doi.org/10.1016/j.apsusc.2017.01.141

    Article  ADS  Google Scholar 

  15. J.S. Buckley, Curr. Opin. Colloid Interface Sci. 6(3), 191–196 (2001). https://doi.org/10.1016/S1359-0294(01)00083-8

    Article  Google Scholar 

  16. U. Ali, K.J.B.A. Karim, N.A. Buang, Polym. Rev. 55(4), 678–705 (2015). https://doi.org/10.1080/15583724.2015.1031377

    Article  Google Scholar 

  17. H.S. Park, H.S. Park, M.S. Gong, Macromol. Res. 18(9), 897–903 (2010). https://doi.org/10.1007/s13233-010-0913-2

    Article  Google Scholar 

  18. S.M. Pawde, K. Deshmukh, J. Appl. Polym. Sci. 114(4), 2169–2179 (2009). https://doi.org/10.1002/app.30641

    Article  Google Scholar 

  19. S. Rajendran, M. Sivakumar, R. Subadevi, J. Power Sources 124(1), 225–230 (2003). https://doi.org/10.1016/S0378-7753(03)00591-3

    Article  ADS  Google Scholar 

  20. G. Lamour, A. Hamraoui, A. Buvailo, Y. Xing, S. Keuleyan, V. Prakash, A. Eftekhari-Bafrooei, E. Borguet, J. Chem. Educ. 87(12), 1403–1407 (2010). https://doi.org/10.1021/ed100468u

    Article  Google Scholar 

  21. H. Chen, J.L. Muros-Cobos, A. Amirfazli, Rev. Sci. Instrum. 89(3), 035117 (2018). https://doi.org/10.1063/1.5022370

    Article  ADS  Google Scholar 

  22. M.Y. Alkawareek, B.M. Akkelah, S.M. Mansour, H.M. Amro, S.R. Abulateefeh, A.M. Alkilany, J. Chem. Educ. 95(12), 2227–2232 (2018). https://doi.org/10.1021/acs.jchemed.8b00276

    Article  Google Scholar 

  23. V. Nežerka, M. Somr, J. Trejbal, Exp. Tech. 42(3), 271–278 (2018). https://doi.org/10.1007/s40799-017-0231-0

    Article  Google Scholar 

  24. A. Bateni, A. Amirfazli, A.W. Neumann, Colloids Surf. A Physicochem. Eng. Asp. 289(1–3), 25–38 (2006). https://doi.org/10.1016/j.colsurfa.2006.04.016

    Article  Google Scholar 

  25. P. Di Marco, F. Pedretti, G. Saccone, Effect of an external electric field on the shape of a dielectric sessile drop. In: 8th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, 1–5 (2013).

  26. V. Vancauwenberghe, P. Di Marco, D. Brutin, Colloids Surf. A Physicochem. Eng. Asp. 432, 50–56 (2013). https://doi.org/10.1016/j.colsurfa.2013.04.067

    Article  Google Scholar 

  27. J.M. Roux, J.L. Achard, J. Electrostat. 67(5), 789–798 (2009). https://doi.org/10.1016/j.elstat.2009.06.001

    Article  Google Scholar 

  28. H. Almohammadi, A. Amirfazli, Colloids Surf. A Physicochem. Eng. Asp. 555, 580–585 (2018). https://doi.org/10.1016/j.colsurfa.2018.07.022

    Article  Google Scholar 

  29. A. Kalantarian, R. David, A.W. Neumann, Langmuir 25(24), 14146–14154 (2009). https://doi.org/10.1021/la902016j

    Article  Google Scholar 

  30. A.F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, M. Unser, Colloids Surf. A Physicochem. Eng. Asp. 364(1–3), 72–81 (2010). https://doi.org/10.1016/j.colsurfa.2010.04.040

    Article  Google Scholar 

  31. H. Gu, C. Wang, S. Gong, Y. Mei, H. Li, W. Ma, Surf. Coat. Technol. 292, 72–77 (2016). https://doi.org/10.1016/j.surfcoat.2016.03.014

    Article  Google Scholar 

  32. A.W. Neumann, R.J. Good, Techniques of measuring contact angles. Surface and Colloid Science, (Springer, Boston, MA, 1979) pp. 31–91.

  33. D.L. Williams, A.T. Kuhn, M.A. Amann, M.B. Hausinger, M.M. Konarik, E.I. Nesselrode, Galvanotechnik 101, 2502–2512 (2010)

    Google Scholar 

  34. V.A. Lubarda, K.A. Talke, Langmuir 27(17), 10705–10713 (2011). https://doi.org/10.1021/la202077w

    Article  Google Scholar 

  35. A. Skłodowska, M. Woźniak, R. Matlakowska, Biol. Proced. Online 1(3), 114–121. (1999). https://doi.org/10.1251/bpo14

  36. A. Bateni, S.S. Susnar, A. Amirfazli, A.W. Neumann, Colloids Surf. A Physicochem. Eng. Asp. 219(1–3), 215–231 (2003). https://doi.org/10.1016/S0927-7757(03)00053-0

    Article  Google Scholar 

  37. A.F. Stalder, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann, Colloids Surf. A Physicochem. Eng. Asp. 286(1–3), 92–103 (2006). https://doi.org/10.1016/j.colsurfa.2006.03.008

    Article  Google Scholar 

  38. K.Y. Law, H. Zhao, Surface Wetting: Characterization, Contact Angle, and Fundamentals (Springer, Basel, Switzerland, 2016)

    Book  Google Scholar 

  39. T. Young, Philos. Trans. R. Soc. 95, 65–87 (1805). https://doi.org/10.1098/rstl.1805.0005

    Article  ADS  Google Scholar 

  40. K. Adamiak, J. Electrostat. 51–52, 578–584 (2001). https://doi.org/10.1016/S0304-3886(01)00059-6

    Article  Google Scholar 

  41. A. Bateni, S.S. Susnar, A. Amirfazli, A.W. Neumann, Langmuir 20(18), 7589–7597 (2004). https://doi.org/10.1021/la0494167

    Article  Google Scholar 

  42. A. Bateni, A. Ababneh, J.A.W. Elliott, A.W. Neumann, A. Amirfazli, Adv. Space Res. 36(1), 64–69 (2005). https://doi.org/10.1016/j.asr.2005.02.084

    Article  ADS  Google Scholar 

  43. A.W. Neumann, R. David, Y. Zuo (Eds.), Applied Surface Thermodynamics, Vol. 151 (CRC press, 2010)

  44. S. Kashuk, M. Iskander, J. Vis. 18, 121–130 (2015). https://doi.org/10.1007/s12650-014-0232-3

    Article  Google Scholar 

  45. Z. Liu, C. Liu, IEEE Trans. Image Process. 17(10), 1975–1980 (2008). https://doi.org/10.1109/TIP.2008.2002837

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Uçar, Sci. World J. 2014, 628494 (2014). https://doi.org/10.1155/2014/628494

    Article  Google Scholar 

  47. D. Riehle, D. Reiser, H.W. Griepentrog, Comput. Electron. Agric. 169, 105201 (2020). https://doi.org/10.1016/j.compag.2019.105201

    Article  Google Scholar 

  48. G. Palanisamy, P. Ponnusamy, V.P. Gopi, Signal Image Video Process. 13(4), 719–726. (2019). https://doi.org/10.1007/s11760-018-1401-y

  49. J. Chen, X. Qi, W. Wang, B. Li, Y. Liu, Multimed. Tools. Appl. 79, 30311–30327 (2020). https://doi.org/10.1007/s11042-020-09560-8

    Article  Google Scholar 

  50. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Prepared by Pearson Education, 2007)

  51. Z. Charouh, M. Ghogho, Z. Guennoun, Improved background subtraction-based moving vehicle detection by optimizing morphological operations using machine learning. In 2019 IEEE International Symposium on INnovations in Intelligent Systems and Applications (INISTA), pp. 1–6 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Karhan.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karhan, M. Analysis of Wettability Characteristics in the Absence of the Electric Field and Under HVDC using Designed and Implemented an Experimental Platform for Contact Angle Measurement. Braz J Phys 52, 9 (2022). https://doi.org/10.1007/s13538-021-01019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-021-01019-x

Keywords

Navigation