Skip to main content
Log in

Genomic analysis of polycarpellary rice (Oryza sativa L.) through whole genome resequencing

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

There is a natural floral organ mutant of rice (var. Jugal) where the florets, popularly known as spikelet bear multiple carpels and produce multiple kernels in most of its grain. In our earlier work a detailed study has been done on its morpho-anatomical structure with allelic diversity and expression study of the major genetic loci associated with floral organ development. In present study high throughput whole genome sequencing was done which generated about of 3.7 million base pair genomic data for downstream analysis. The reads were about 101 bases long and mapped to the Oryza sativa var. Nipponbare as reference genome. Genome wide variant analysis detected 1,096,419 variants which included 943,033 SNPs and 153,386 InDels. A total of 24,920 non-synonymous SNPs were identified for 11,529 identified genes. Chromosome-wise distribution of uniquely mapped reads onto reference genome showed that maximum reads were mapped to 1st chromosome and least to 9th chromosome. 10th chromosome showed highest density of variations (about 325.6 per 100 kb genome sequence). Detailed sequence analysis of 23 floral organ developmental genes detected 419 potent variants where DL (Drooping Leaf) and OSH1 (Oryza sativa Homeobox1) genes showed highest number (32) of variants; whereas, MADS21 (Minichromosome Agamous Deficient Serum Factor 21) gene have lowest number (5) of variants. The information generated in this study will enrich the genomics of floral organ development in indica rice and cereal crops in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BAM:

Binary alignment map

CTX:

Inter chromosomal translocation

DEL:

Deletion

DL :

Drooping leaf

FON:

Floral organ mutant

GB:

Gigabyte

INS:

Insertion

INV:

Inversion

IRGSP:

International Rice Genome Project

ITX:

Intra chromosomal translocation

MADS :

M for minichromosome maintenance factor, a for agamous, d for deficient s for serum response factor

NCBI:

National Center for Biotechnology Information

NGS:

Next generation sequencing

OSH1 :

Oryza sativa Homeobox1

SAM:

Sequence alignment map

SAM tool:

Sequence alignment map tool

SNP:

Single nucleotide polymorphism

SPAdes:

Sequential pattern discovery using equivalence classes

SRA:

Sequence alignment map

Ts:

Transition

Tv:

Transversion

UTR:

Untranslated region

Vcf:

Variant call format

References

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, BealerK MT (2009) BLAST + : architecture and applications. BMC Bioinform 10:421

    Article  Google Scholar 

  • Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6(9):677–681

    Article  CAS  Google Scholar 

  • Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92

    Article  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualizationand analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

    Article  CAS  Google Scholar 

  • Das SP, Deb D, Dey N (2018) Micromorphic and molecular studies of floral organs of a multiple seeded rice (Oryza sativa L.). Plant Mol Biol Report. https://doi.org/10.1007/s11105-018-1116-9

    Article  Google Scholar 

  • Das SP, Deb D, Dey N (2020) Expression study of five genes involved in floral organ development in multiple seeded rice. J Plant Biochem Biotechnol 29(2):348–351. https://doi.org/10.1007/s13562-019-00526-y

    Article  CAS  Google Scholar 

  • Hu Y, Mao B, Peng Y, Sun Y, Pan Y, Xia Y, Sheng X, Li Y, Tang L, Yuan L, Zhao B (2014) Deep re-sequencing of a widely used maintainer line of hybrid rice for discovery of DNA polymorphisms and evaluation of genetic diversity. Mol Genet Genom 289:303–315

    Article  CAS  Google Scholar 

  • Hu Y, Liang W, Yin C, Yang X, Ping B, Li A, Jia R, Chen M, Luo Z, Cai Q, Zhao X, Dabing Zhang D, Yuan Z (2015) Interactions of OsMADS1 with floral homeotic genes in rice flower development. Mol Plant 8(9):1366–1384

    Article  CAS  Google Scholar 

  • Hwang SG, Hwang JG, Kim DS, Jang CS (2014) Genome-wide DNA polymorphism and transcriptome analysis of an early-maturing rice mutant. Genetica 142:73–85

    Article  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800. https://doi.org/10.1038/nature03895

    Article  CAS  Google Scholar 

  • Karmakar J, Roychowdhury R, Kar RK, Deb D, Dey N (2012) Profiling of selected indigenous rice (Oryza sativa L.) landraces of Rarh Bengal in relation to osmotic stress tolerance. Physiol Mol Biol Plants 18:125–132

    Article  CAS  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  • Nagasawa N, Miyoshi M, Nagato Y (1996) DL regulates both leaf and pistil development in rice. Rice Genet Newsl 13(12):102–105

    Google Scholar 

  • Pandian RT, Thiyagarajan K (2004) Inheritance of floral traits in spontaneous mutant in rice (Oryza sativa L.). Curr Sci 87:1051–1052

    Google Scholar 

  • Prain D (1903) Bengal plants, vol 2. Botanical Survey of India, Calcutta, p 1184

    Google Scholar 

  • Priya A, Das SP, Goswami S, Adak MK, Deb D, Dey N (2015) An exploratory study on allelic diversity for five genetic loci associated with floral organ development in rice. Am J Plant Sci 6:1973–1980

    Article  CAS  Google Scholar 

  • Rathinasabapathi P, Purushothaman N, Ramprasad VL, Parani M (2015) Whole genome sequencing and analysis of Swarna, a widely cultivated indica rice variety with low glycemic index. Sci Rep 5:11303. https://doi.org/10.1038/srep11303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Hong SK, Tagiri A, Kitano H, Yamamoto N, Nagato Y, Matsuoka M (1996) A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. Proc Natl Acad Sci U S A 93:8117–8122

    Article  CAS  Google Scholar 

  • Singhabahu S, Wijesinghe C, Gunawardana D, Senarath-Yapa MD, Kannangara M, Edirisinghe R, Dissanayake VHW (2017) Whole genome sequencing and analysis of Godawee, a salt tolerant indica rice variety. J Rice Res 5:1. https://doi.org/10.4172/2375-4338.1000177

    Article  Google Scholar 

  • Subbaiyan GK, Waters DL, Katiyar SK, Sadananda AR, Vaddadi S, Henry RJ (2012) Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. Plant Biotechnol J 10:623–634. https://doi.org/10.1111/j.1467-7652.2011.00676.x

    Article  CAS  PubMed  Google Scholar 

  • Wakeley J (1996) The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends Ecol Evol 11:158–162

    Article  CAS  Google Scholar 

  • Wang L, Hao L, Li X, Hu S, Ge S (2009) SNP desert of Asian cultivated rice: genomic regions under domestication. J Evol Biol 22:751–761

    Article  CAS  Google Scholar 

  • Yamaguchi T, Nagasawa KS, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    Article  CAS  Google Scholar 

  • Zhang F, Xu T, Mao L, Yan S, Chen X, Wu Z, Chen R, Luo X, Xie J, Gao S (2016) Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication. BMC Plant Biol 16:103

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by SERB, Department of Science and Technology, Government of India in form of a research project (Ref. No. SB/YS/LS-187/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narottam Dey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.P., Jasrotia, R.S., Deb, D. et al. Genomic analysis of polycarpellary rice (Oryza sativa L.) through whole genome resequencing. J. Plant Biochem. Biotechnol. 30, 364–372 (2021). https://doi.org/10.1007/s13562-020-00602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-020-00602-8

Keywords

Navigation