Skip to main content
Log in

Analyzing Unevenly Spaced Longitudinal Count Data

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

In a longitudinal setup, as opposed to equi-spaced count responses, there are situations where an individual patient may provide successive count responses at unevenly spaced time intervals. These unevenly spaced count responses are in general accompanied with covariates information collected at the response occurring time points. Here, the responses and covariates are complete as opposed to certain longitudinal data subject to non-response or missing. The regression analysis of this type of unevenly spaced longitudinal count data is not adequately discussed in the literature. In this paper we propose a dynamic model for unevenly spaced longitudinal Poisson counts and demonstrate the computation of correlations among such count responses through an example with T = 4 time intervals such as 4 weeks as the duration of the longitudinal study. Here, if an individual patient reports a problem (in terms of counts) say at time intervals 1, 3, and 4 (i.e., in first, third and fourth weeks); then 3 count responses collected at these 3 times/weeks would be unevenly spaced. Clearly, this individual had nothing to report at time point 2, i.e., in second week, and hence these 3 responses are considered to be complete. Here, we emphasize that this ‘no response’ in the second week for the individual, is, neither a missing response (or so-called non-response) nor can it be quantified as a zero count because no probability can be assigned for a non-existing event. As far as the total number of time intervals is concerned it can be large but it is usually small in a longitudinal setup. However, for accuracy of correlations, one can make each interval small leading to a large value of T. For inferences, the regression parameters are estimated by using the well known GQL (generalized quasi-likelihood) approach. For the estimation of the unevenly spaced pair-wise correlation index parameters we use a standardized method of moments. The performance of the proposed estimation approaches are examined through an intensive simulation study. The results of this paper should be useful to bio-medical practitioners either currently dealing with this type of unevenly spaced count data or planning for data collection on a similar study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Al-Oshi, M.A. and Alzaid, A.A. (1987). First order integer valued autoregressive (INAR(1)) process. Journal of Time Series Analysis 8, 261–275.

    Article  MathSciNet  Google Scholar 

  • Freeland, R. K. and McCabe, B. P. M. (2004). Forecasting discrete valued low count time series. International Journal of Forecasting 20, 427–434.

    Article  Google Scholar 

  • Jowaheer, V. and Sutradhar, B. C. (2002). Analysing longitudinal count data with overdispersion. Biometrika 89, 389–399.

    Article  MathSciNet  Google Scholar 

  • Leppik, E. I., Dreifuss, E. F., Bowman, E. T., Santilli, E. N., Jacobs, E. M., Crosby, E. C., Cloyd, E. J., Stockman, E. J. and Gutierres, E. A. (1985). A double-blind crossover evaluation of progabide in partial seizures. Neurology 35, 285.

    Article  Google Scholar 

  • McKenzie, E. and Some, A R M A (1988). models for dependent sequences for Poisson counts. Advances in Applied Probability 20, 822–835.

    Article  MathSciNet  Google Scholar 

  • Oyet, A. and Sutradhar, B. C. (2013). Longitudinal modeling of infectious disease. Sankhya B, The Indian Journal of Statistics 75, 319–342.

    Article  MathSciNet  Google Scholar 

  • Sutradhar, B. C. (2003). An overview on regression models for discrete longitudinal responses. Statistical Science 38, 377–393.

    MathSciNet  MATH  Google Scholar 

  • Sutradhar, B. C. (2008). On forecasting counts. Journal of Forecasting 27, 109–129.

    Article  MathSciNet  Google Scholar 

  • Sutradhar, B. C. (2010). Inferences in generalized linear longitudinal mixed models. Canadian Journal of Statistics, Special issue 38, 174–196.

    MathSciNet  MATH  Google Scholar 

  • Sutradhar, B. C. (2011). Dynamic mixed models for familial longitudinal data. Springer, New York.

    Book  Google Scholar 

  • Sutradhar, B. C. (2013). Inference progress in missing data analysis from independent to longitudinal setup. Springer Lecture Notes in Statistics, Sutradhar, B. C. (ed.), p. 95–116.

  • Sutradhar, B. C. and Bari, W. (2007). On generalized quasilikelihood inference in longitudinal mixed model for count data. Sankhya B 69, 671–699.

    MathSciNet  MATH  Google Scholar 

  • Sutradhar, B. C. and Zheng, N. (2018). Inferences in binary dynamic fixed models in a semi-parametric setup. Sankhya B 80, 263–291.

    Article  MathSciNet  Google Scholar 

  • Thall, P. F. and Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics 46, 657–671.

    Article  MathSciNet  Google Scholar 

  • Winkelmann, R. (2008). Econometric analysis of count data. Springer, New York.

    MATH  Google Scholar 

  • Xu, S. and Grunwald, J.R. H. (2007). Analysis of longitudinal count data with serial correlation. Biometrical Journal 49, 416–428.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor, Associate Editor and three referees whose comments and suggestions contributed to improvements in the quality of the paper. The research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alwell J. Oyet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Moment Equations for Pair-Wise Correlation Index Parameters

Appendix: Moment Equations for Pair-Wise Correlation Index Parameters

Table 7 Simulated means (SM) and standard errors (SSE) of parameters of the dynamic model for unevenly spaced count data under design D1 with K = 400, \(\sigma _{\gamma }^{2} = 0\)

Moment Estimating Equation for ρ 13

Based on the same approach used for ρ12 (see Eq. 4.1)), the moment equation for ρ13 may be constructed as

$$ f_{s,13}-f_s(\rho_{13})=0, $$
(5.1)

where

$$ \begin{array}{@{}rcl@{}} f_{s,13}&=&\sum\limits^{K_{21}+K_{22}+K_{23}}_{i_2=K_{21}+K_{22}+1} \left[\left\{\left( \frac{y_{i_2t_1}-\mu_{i_2t_1}}{\sigma_{i_2t_1}}\right) \left( \frac{y_{i_2t_{3}} -\mu_{i_2t_{3}}}{\sigma_{i_2t_3}}\right)\right\} \right.\\ &&+ \left.\left\{\left( \frac{y_{i_2t_1}-\mu_{i_2t_1}}{\sigma_{i_2t_1}}\right) \left( \frac{y_{i_2t_{4}} -\mu_{i_2t_{4}}}{\sigma_{i_2t_4}}\right)\right\}\right]\\ &&+\sum\limits^{K_{31}+K_{32}}_{i_3=K_{31}+1}\left\{\left( \frac{y_{i_3t_1}-\mu_{i_3t_1}} {\sigma_{i_3t_1}}\right)\left( \frac{y_{i_3t_{3}} -\mu_{i_3t_{3}}}{\sigma_{i_3t_3}}\right)\right\}, \end{array} $$
(5.2)

and

$$ \begin{array}{@{}rcl@{}} f_s(\rho_{13})&=&\sum\limits^{K_{21}+K_{22}+K_{23}}_{i_2=K_{21}+K_{22}+1} \left\{\frac{1}{\sigma_{i_2t_1}}\mu_{i_2t_1}\rho_{13}\left( \frac{1}{\sigma_{i_2t_3}} +\frac{1}{\sigma_{i_2t_4}}\rho_{34}\right)\right\} \\ &&+\sum\limits^{K_{31}+K_{32}}_{i_3=K_{31}+1}\left\{\frac{1}{\sigma_{i_3t_1}}\mu_{i_3t_1} \frac{1}{\sigma_{i_3t_3}}\rho_{13}\right\}. \end{array} $$
(5.3)

Moment Estimating Equation for ρ 14

Similar to Eq. 5.1, the moment equation for ρ14 is given by

$$ f_{s,14}-f_s(\rho_{14})=0 $$
(5.4)

where

$$ \begin{array}{@{}rcl@{}} f_{s,14}&=&\sum\limits^{K_{31}+K_{32}+K_{33}}_{i_3=K_{31}+K_{32}+1} \left\{\left( \frac{y_{i_3t_1}-\mu_{i_3t_1}}{\sigma_{i_3t_1}}\right) \left( \frac{y_{i_3t_{4}} -\mu_{i_3t_{4}}}{\sigma_{i_3t_4}}\right)\right\} \end{array} $$
(5.5)

and the corresponding expected function fs(ρ14) has the formula

$$ \begin{array}{@{}rcl@{}} f_s(\rho_{14})&=&\sum\limits^{K_{31}+K_{32}+K_{33}}_{i_3=K_{31}+K_{32}+1} \left\{\frac{1}{\sigma_{i_3t_1}}\mu_{i_3t_1}\frac{1}{\sigma_{i_3t_4}}\rho_{14}\right\}. \end{array} $$
(5.6)

Moment Estimating Equation for ρ 23

In this case,

$$ f_{s,23}-f_s(\rho_{23})=0, $$
(5.7)

where

$$ \begin{array}{@{}rcl@{}} f_{s,23}&=& \sum\limits^{K_1}_{i_1=1}\sum\limits^1_{d=0}\left[ \left\{\left( \frac{y_{i_11t_1}-\mu_{i_1t_1}}{\sigma_{i_1t_1}}\right) \left( \frac{y_{i_1t_{3+d}} -\mu_{i_1t_{3+d}}}{\sigma_{i_1t_{3+d}}}\right)\right\}\right.\\ &&+ \left. \left\{\left( \frac{y_{i_1t_2}-\mu_{i_1t_2}}{\sigma_{i_1t_2}}\right) \left( \frac{y_{i_1t_{3+d}} -\mu_{i_1t_{3+d}}}{\sigma_{i_1t_{3+d}}}\right)\right\}\right] \\ &&+\sum\limits^{K_{21}}_{i_2=1}\left[ \left\{\left( \frac{y_{i_2t_1}-\mu_{i_2t_1}}{\sigma_{i_2t_1}}\right) \left( \frac{y_{i_2t_{3}} -\mu_{i_2t_{3}}}{\sigma_{i_2t_3}}\right)\right\}\right.\\ &&+ \left. \left\{\left( \frac{y_{i_2t_2}-\mu_{i_2t_2}}{\sigma_{i_2t_2}}\right) \left( \frac{y_{i_2t_{3}} -\mu_{i_2t_{3}}}{\sigma_{i_2t_3}}\right)\right\}\right] \\ &&+\sum\limits^{K_2}_{i_2=K_{21}+K_{22}+K_{23}+1}\sum\limits^1_{d=0} \left\{\left( \frac{y_{i_2t_2}-\mu_{i_2t_2}}{\sigma_{i_2t_2}}\right) \left( \frac{y_{i_2t_{3+d}} -\mu_{i_2t_{3+d}}}{\sigma_{i_2t_{3+d}}}\right)\right\} \\ &&+{\sum}^{K_{31}+K_{32}+K_{33}+K_{34}}_{i_3=K_{31}+K_{32}+K_{33}+1} \left\{\left( \frac{y_{i_2t_2}-\mu_{i_2t_2}}{\sigma_{i_2t_2}}\right) \left( \frac{y_{i_2t_{3}} -\mu_{i_2t_{3}}}{\sigma_{i_2t_3}}\right)\right\}, \end{array} $$
(5.8)

and the corresponding expected function is given by

$$ \begin{array}{@{}rcl@{}} f_s(\rho_{23})&=&{\sum}^{K_1}_{i_1=1}\left[\left\{\frac{1}{\sigma_{i_1t_1}}\mu_{i_1t_1} \rho_{23}\rho_{12}\left( \frac{1}{\sigma_{i_1t_3}}+\frac{1}{\sigma_{i_1t_4}}\rho_{34}\right)\right\} \right.\\ &&+\left. \left\{\frac{1}{\sigma_{i_1t_2}}\mu_{i_1t_2}\rho_{23}\left( \frac{1}{\sigma_{i_1t_3}}+ \frac{1}{\sigma_{i_1t_4}}\rho_{34}\right)\right\} \right]\\ &&+{\sum}^{K_{21}}_{i_2=1}\left[\left\{\frac{1}{\sigma_{i_2t_2}}\mu_{i_2t_2} \frac{1}{\sigma_{i_2t_3}}\rho_{23}\right\} +\left\{\frac{1}{\sigma_{i_2t_1}}\mu_{i_2t_1}\frac{1}{\sigma_{i_2t_3}} \rho_{23}\rho_{12}\right\}\right] \\ &&+{\sum}^{K_2}_{i_2=K_{21}+K_{22}+K_{23}+1}\left\{ \frac{1}{\sigma_{i_2t_2}}\mu_{i_2t_2}\rho_{23}\left( \frac{1}{\sigma_{i_2t_3}} +\frac{1}{\sigma_{i_2t_4}}\rho_{34}\right)\right\}\\ &&+{\sum}^{K_{31}+K_{32}+K_{33}+K_{34}}_{i_3=K_{31}+K_{32}+K_{33}+1} \left\{\frac{1}{\sigma_{i_3t_2}}\mu_{i_3t_2}\frac{1}{\sigma_{i_3t_3}} \rho_{23}\right\}. \end{array} $$
(5.9)

Moment Estimating Equation for ρ 24

This moment equation is written as

$$ f_{s,24}-f_s(\rho_{24})=0, $$
(5.10)

where

$$ \begin{array}{@{}rcl@{}} f_{s,24}&=&{\sum}^{K_{21}+K_{22}}_{i_2=K_{21}+1} \left[ \left\{\left( \frac{y_{i_2t_1}-\mu_{i_2t_1}}{\sigma_{i_2t_1}}\right) \left( \frac{y_{i_2t_{4}} -\mu_{i_2t_{4}}}{\sigma_{i_2t_4}}\right)\right\}\right.\\ &&+ \left. \left\{\left( \frac{y_{i_2t_2}-\mu_{i_2t_2}}{\sigma_{i_2t_2}}\right) \left( \frac{y_{i_2t_{4}} -\mu_{i_2t_{4}}}{\sigma_{i_2t_4}}\right)\right\} \right]\\ &&+{\sum}^{K_{31}+K_{32}+K_{33}+K_{34}+K_{35}}_{i_3=K_{31}+K_{32}+K_{34}+1} \left[\left\{\left( \frac{y_{i_3t_2}-\mu_{i_3t_2}}{\sigma_{i_3t_2}}\right) \left( \frac{y_{i_3t_{4}} -\mu_{i_3t_{4}}}{\sigma_{i_3t_4}}\right)\right\}\right],\\ \end{array} $$
(5.11)

and

$$ \begin{array}{@{}rcl@{}} f_s(\rho_{24})&=&{\sum}^{K_{21}+K_{22}}_{i_2=K_{21}+1} \left[\left\{\frac{1}{\sigma_{i_2t_2}}\mu_{i_2t_2}\frac{1}{\sigma_{i_2t_4}}\rho_{24}\right\} +\left\{\frac{1}{\sigma_{i_2t_1}}\mu_{i_2t_1}\frac{1}{\sigma_{i_2t_4}}\rho_{24}\rho_{12}\right\} \right]\\ &&+{\sum}^{K_{31}+K_{32}+K_{33}+K_{34}+K_{35}}_{i_3=K_{31}+K_{32}+K_{34}+1} \left\{\frac{1}{\sigma_{i_3t_2}}\mu_{i_3t_2}\frac{1}{\sigma_{i_3t_4}}\rho_{24}\right\}. \end{array} $$
(5.12)

Moment Estimating Equation for ρ 34

The moment equation for the last correlation index parameter ρ34 is written as

$$ f_{s,34}-f_s(\rho_{34})=0, $$
(5.13)

where

$$ \begin{array}{@{}rcl@{}} f_{s,34}&=&{\sum}^{K_1}_{i_1=1}{\sum}^{T-1}_{u=1} \left\{\left( \frac{y_{i_1t_u}-\mu_{i_1t_u}}{\sigma_{i_1t_u}}\right) \left( \frac{y_{i_1t_{4}} -\mu_{i_1t_{4}}}{\sigma_{i_1t_4}}\right)\right\}\\ &&+{\sum}^{K_{21}+K_{22}+K_{23}}_{i_2=K_{21}+K_{22}+1} \left[\left\{\left( \frac{y_{i_2t_1}-\mu_{i_2t_1}}{\sigma_{i_2t_1}}\right) \left( \frac{y_{i_2t_{4}} -\mu_{i_2t_{4}}}{\sigma_{i_2t_4}}\right)\right\} \right.\\ &&+ \left. \left\{\left( \frac{y_{i_2t_3}-\mu_{i_2t_3}}{\sigma_{i_2t_3}}\right) \left( \frac{y_{i_2t_{4}} -\mu_{i_2t_{4}}}{\sigma_{i_2t_4}}\right)\right\}\right]\\ &&+{\sum}^{K_2}_{i_2=K_{21}+K_{22}+K_{23}+1} \left[\left\{\left( \frac{y_{i_2t_2}-\mu_{i_2t_2}}{\sigma_{i_2t_2}}\right) \left( \frac{y_{i_2t_{4}} -\mu_{i_2t_{4}}}{\sigma_{i_2t_4}}\right)\right\}\right.\\ &&+\left. \left\{\left( \frac{y_{i_2t_3}-\mu_{i_2t_3}}{\sigma_{i_2t_3}}\right) \left( \frac{y_{i_2t_{4}} -\mu_{i_2t_{4}}}{\sigma_{i_2t_4}}\right)\right\}\right]\\ &&+{\sum}^{K_3}_{i_3=K_{31}+K_{32}+K_{33}+K_{34}+K_{35}+1} \left\{\left( \frac{y_{i_3t_3}-\mu_{i_3t_3}}{\sigma_{i_3t_3}}\right) \left( \frac{y_{i_3t_{4}} -\mu_{i_3t_{4}}}{\sigma_{i_3t_4}}\right)\right\},\\ \end{array} $$
(5.14)

and fs(ρ34) has the formula

$$ \begin{array}{@{}rcl@{}} f_s(\rho_{34})&=& {\sum}^{K_1}_{i_1=1}\left\{\frac{1}{\sigma_{i_1t_4}}\rho_{34} \left( \frac{1}{\sigma_{i_1t_1}}\mu_{i_1t_1}\rho_{12}\rho_{23} +\frac{1}{\sigma_{i_1t_2}}\mu_{i_1t_2}\rho_{23}+\frac{1}{\sigma_{i_1t_3}} \mu_{i_1t_3}\right)\right\}\\ &&+{\sum}^{K_{21}+K_{22}+K_{23}}_{i_2=K_{21}+K_{22}+1} \left\{\frac{1}{\sigma_{i_2t_4}}\rho_{34} \left( \frac{1}{\sigma_{i_2t_1}}\mu_{i_2t_1}\rho_{13}+\frac{1}{\sigma_{i_2t_3}} \mu_{i_2t_3}\right)\right\} \\ &&+{\sum}^{K_2}_{i_2=K_{21}+K_{22}+K_{23}+1} \left\{\frac{1}{\sigma_{i_2t_4}}\rho_{34}\left( \frac{1}{\sigma_{i_2t_2}}\mu_{2_1t_2}\rho_{23} +\frac{1}{\sigma_{i_2t_3}}\mu_{i_2t_3}\right)\right\} \\ &&+ {\sum}^{K_3}_{i_3=K_{31}+K_{32}+K_{33}+K_{34}+K_{35}+1} \left[\frac{1}{\sigma_{i_3t_3}}\mu_{i_3t_3}\frac{1}{\sigma_{i_3t_4}}\rho_{34}\right]. \end{array} $$
(5.15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyet, A.J., Sutradhar, B.C. Analyzing Unevenly Spaced Longitudinal Count Data. Sankhya B 83, 342–373 (2021). https://doi.org/10.1007/s13571-019-00200-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-019-00200-2

Keywords and phrases

AMS (2000) subject classification

Navigation