Skip to main content
Log in

Silicon alleviates salt stress by modulating antioxidant enzyme activities in Dianthus caryophyllus ‘Tula’

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Although silicon (Si) is not considered as an essential element, it is beneficial to the plant growth. Its effect is more evident under abiotic and biotic stress conditions. The objective of this study is to investigate the role of Si on the in vitro growth and resistance to salt stress of Dianthus caryophyllus ‘Tula’. The experiment was designed as a factorial design with 0, 50, or 100 mg·L−1 of potassium silicate (K2SiO3) in combination with 0, 50, or 100 mM sodium chloride (NaCl). The treatment of 50 mg·L−1 Si improved the growth of plant. However, the treatment of Si at 100 mg·L−1 reduced the growth. Although NaCl retarded the growth, addition of Si along with NaCl to the culture medium mitigated the effect of NaCl. A primary defense line by Si to overcome the photosynthetic depression was apparent from the increased chlorophyll content in the Si + NaCl treatment as compared to the treatment of NaCl alone. Enhancement of growth and resistance to salinity by Si was thought to be due to the modulation in activity of antioxidant enzymes, such as superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, and catalase. Therefore, our results suggested that 50 mg·L−1 Si supplementation could be optimal for improved growth in vitro and enhanced resistance against salinity in D. caryophyllus ‘Tula’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abogadallah, G.M. 2010. Antioxidative defense under salt stress. Plant Signal. Behav. 5:369–374.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Agarie, S., W. Agata, H. Kubota, and P.B. Kaufmann. 1992. Physiological role of silicon in photosynthetic and dry matter production in rice plants. Crop Sci. 61:200–206.

    Article  CAS  Google Scholar 

  • Ahmad, R., S.H. Zaheer, and S. Ismail. 1992. Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci. 85:43–50.

    Article  CAS  Google Scholar 

  • Al-Aghabary, K., Z.J. Zhu, and Q.H. Shi. 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Nutr. 27:2101–2115

    Article  Google Scholar 

  • Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I. and H. Marschner. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98:1222–1227.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choudhury, S., P. Panda, L. Sahoo, and S.K. Panda. 2013. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal. Behav. 8:e23681.

    Article  Google Scholar 

  • Davies, K.J. 1995. Oxidative stress: The paradox of aerobic life. Biochem. Soc. Symp. 61:1–31.

    CAS  PubMed  Google Scholar 

  • Elliott, C.L. and G.H. Snyder. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J. Agric. Food Chem. 39:1118–1119.

    Article  CAS  Google Scholar 

  • Epstein, E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:641–664.

    Article  CAS  PubMed  Google Scholar 

  • Fauteux, F., W. Remus-Borel, J.G. Menzies, and R.R. Belanger. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 249:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Frantz, J.M., J.C. Locke, L. Datnoff, M. Omer, A. Widrig, D. Sturtz, L. Horst, and C.R. Krause. 2008. Detection, distribution, and quantification of silicon in floricultural crops utilizing three distinct analytical methods. Commun. Soil Sci. Plant Anal. 39:2734–2751.

    Article  CAS  Google Scholar 

  • Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutases. Plant Physiol. 59:309–314.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gunes, A., A. Inal, E.G. Bagci, and D.J. Pilbeam. 2007. Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil 290:103–114.

    Article  CAS  Google Scholar 

  • Kaya, C., H. Kirnak, and D. Higgs. 2001. Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars grown at high (NaCl) salinity. J. Plant Nutr. 24:357–367.

    Article  CAS  Google Scholar 

  • Kim, S.Y., J.H. Lim, M.R. Park, Y.J. Kim, T.I. Park, Y.W. Seo, K.G. Choi, and S.J. Yun. 2005. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J. Biochem. Mol. Biol. 38:218–224.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.H., A.L. Khan, M. Waqas, J.K. Shim, D.H. Kim, K.Y. Lee, and I.J Lee. 2014. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J. Plant Growth Reg. 33:137–149.

    Article  CAS  Google Scholar 

  • Kwon, O.K., Y.A. Kim, K.S. Kim, and H.K. Shin. 2005. Growth and ion balance of carnation under salt stress. J. Kor. Soc. Hort. Sci. 46:380–384.

    CAS  Google Scholar 

  • Liang, Y.C. 1998. Effect of silicon on leaf ultrastructure, chlorophyll content and photosynthetic activity of barley under salt stress. Pedosphere 8:289–296.

    Google Scholar 

  • Liang, Y.C., Q. Chen, Q. Liu, W.H. Zhang, and R.X. Ding. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J. Plant Physiol. 160:1157–1164.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Y.C., Q.R. Shen, Z.G. Shen, and T.S. Ma. 1996. Effects of silicon on salinity tolerance of two barley cultivars. J. Plant Nutr. 19:173–183.

    Article  CAS  Google Scholar 

  • Lin, C.C. and C.H. Kao. 2000. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul. 30:151–155.

    Article  CAS  Google Scholar 

  • Lu, Z. and P.M. Neumann. 1999. Low cell-wall extensibility can limit maximum leaf growth rates in rice. Crop Sci. 36:126–130.

    Article  Google Scholar 

  • Ma, J.F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nut. 50:11–18.

    Article  CAS  Google Scholar 

  • Ma, J.F. and E. Takahashi. 2002a. Silicon uptake and accumulation in plants, p. 73–106. In: J.F. Ma and E. Takahashi (eds.). Soil, fertilizer, and plant silicon research in Japan. Elsevier Science, Amsterdam, The Netherlands.

    Chapter  Google Scholar 

  • Ma, J.F. and E. Takahashi. 2002b. Effect of silicate fertilizer application on paddy rice, p. 49–62. In: J.F. Ma and E. Takahashi (eds.). Soil, fertilizer, and plant silicon research in Japan. Elsevier Science, Amsterdam, The Netherlands.

    Chapter  Google Scholar 

  • Ma, J.F. and N. Yamaji. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11:392–397.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, N.S. and W.R. Leatherwood. 2010. Potassium silicate drenches increased leaf silicon content and affect morphological traits of several floricultural crops grown in a peat-based substrate. Hortscience 45:43–47.

    Google Scholar 

  • Mitani, N. and J.F. Ma. 2005. Uptake system of silicon in different plant species. J. Expt. Bot. 1255-1261.

  • Montoliu A., M.F. Lopez-Climent, V. Arbona, R.M. Perez-Clemente, and A. Gomez-Cadenas. 2009. A novel in vitro tissue culture approach to study salt stress responses in citrus. Plant Growth Regul. 59:179–187.

    Article  CAS  Google Scholar 

  • Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.

    CAS  Google Scholar 

  • Porra, R.J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosyn. Res. 73:149–156.

    Article  CAS  PubMed  Google Scholar 

  • Potts, W.C., J.B. Reid, and I.C. Murfet. 1985. Internode length in Pisum. Gibberellins and the slender phenotype. Physiol. Plant. 63: 357–364.

    Article  CAS  Google Scholar 

  • Prabhakaran, S., I. Sivanesan, E.H. Jo, and B.R. Jeong. 2013. Silicon promotes shoot proliferation and shoot growth of Salvia splendens under salt stress in vitro. Hort. Environ. Biotechnol. 54:311–318.

    Article  Google Scholar 

  • Prabhakaran, S., I. Sivanesan, S. Jana, and B.R. Jeong. 2014. Influence of silicon on growth and tolerance to high temperature in Salvia splendens. Hort. Environ. Biotechnol. 55:271–279.

    Article  Google Scholar 

  • Richmond, K.E. and M. Sussman. 2003. Got silicon? The non-essential beneficial plant nutrient. Current Opin. Plant Biol. 6:268–272.

    Article  CAS  Google Scholar 

  • Rouhier, N. and J.P. Jacquot. 2008. Getting sick may help plants overcome abiotic stress. New Phytol. 180:738–741.

    Article  CAS  PubMed  Google Scholar 

  • Sangster, A.G. 1978. Silicon in the roots of higher plants. Am. J. Bot. 65:929–935.

    Article  CAS  Google Scholar 

  • Takahashi, E., J.F. Ma, and Y. Miyake. 1990. The possibility of silicon as an essential element for higher plants. Comments Agri. Food Chem. 2:99–122.

    CAS  Google Scholar 

  • Tester, M. and R. Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91:503–527.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yeo, A.R., S.A. Flowers, G. Rao, K. Welfare, N. Senanayake, and T.J. Flowers. 1999. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ. 22:559–565.

    Article  CAS  Google Scholar 

  • Zhu, Z., G. Wei, J. Li, Q. Qian, and J. Yu. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 167:527–533.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Ryong Jeong.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soundararajan, P., Manivannan, A., Park, Y.G. et al. Silicon alleviates salt stress by modulating antioxidant enzyme activities in Dianthus caryophyllus ‘Tula’. Hortic. Environ. Biotechnol. 56, 233–239 (2015). https://doi.org/10.1007/s13580-015-0111-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0111-4

Additional key words

Navigation