Skip to main content
Log in

Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro

  • Research Report
  • Tissue Culture/Biotechnology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of the current study is to determine the effect of light quality on enhancement of growth, phytochemicals, antioxidant potential, and antioxidant enzyme activities at in vitro cultures of Rehmannia glutinosa Libosch. In vitro-grown shoot tip explants were cultured on the plant growth regulator (PGR)-free Murashige and Skoog (MS) medium and cultured under a conventional cool white fluorescent light (control), blue light emitting diode (LED) light or red LED light. After four weeks, the growth traits along with total phenol content, total flavonoid content, free radical scavenging activities, and antioxidant enzyme activities were measured. Interestingly, the blue or red LED treatments showed a significant increase in growth parameters compared with the cool white florescent light. In addition, the LED treatments increased the total phenol and flavonoid levels in leaf and root extracts. Furthermore, data on the total antioxidant capacity, reducing power potential, and DPPH radical scavenging capacity also revealed the enhancement of antioxidant capacity under both blue and red LED treatments. Especially, the blue LED treatment significantly increased the antioxidant enzyme activities in both the leaf and root, followed by the red LED treatment. Modulation in the spectral quality particularly by the blue LED induced the antioxidant defense line and was directly correlated with the enhancement of phytochemicals. Therefore, the incorporation of blue or red LED light sources during in vitro propagation of R. glutinosa can be a beneficial way to increase the medicinal values of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Arney, S.E. and D.L Mitchell. 1969. The effect of abscisic acid on stem elongation and correlative inhibition. New Phytol. 68:1001–1015.

    Article  CAS  Google Scholar 

  • Arnon, D.I. 1949. Copper enzymes in isolated chloroplast. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24:1–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blios, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 26:1199–1200.

    Article  Google Scholar 

  • Bottomley, W., H. Smith, and A.W. Galston. 1966. Flavonoid complexes in Pisum sativum. III. The effect of light on the synthesis of kaempferol and quercetin complexes. Phytochemistry 5:117–123.

    Article  CAS  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I. and H. Marschner. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98:1222–1227.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Canamero, R.C., N. Bakrim, J.P. Bouly, A. Garay, E.E Dudkin, Y. Habricot, and M. Ahmad. 2006. Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta 224:995–1003.

    Article  CAS  PubMed  Google Scholar 

  • Chung, I.M., J.J. Kim, J.D. Lim, C.Y. Yu, S.H. Kim, and S.J. Hahn. 2006. Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environ. Expt. Bot. 56:44–53.

    Article  CAS  Google Scholar 

  • Correll, M.J. and J.Z. Kiss. 2005. The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol. 46:317–323.

    Article  CAS  PubMed  Google Scholar 

  • Dewir, Y.H., D. Chakrabarty, M.B. Ali, E.J. Hahn, and K.Y. Paek. 2006. Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environ. Expt. Bot. 58:93–99.

    Article  CAS  Google Scholar 

  • Dong, C., Y. Fu, G. Liu, and H. Liu. 2014. Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. J. Agro. Crop Sci. 200:219–230.

    Article  CAS  Google Scholar 

  • Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutases. Plant Physiol. 59:309–314.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gracia-Perez, E., J.A. Gutierrez-Uribe, and S. Gracia-Lara. 2012. Luteolin content and antioxidant activity in micropropagated plants of Poliomintha glabrescens (Gray). Plant Cell Tiss. Organ Cult. 108:521–527.

    Article  Google Scholar 

  • Hahn, E.J., T. Kozai, and K.Y. Paek. 2000. Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro growth of Rehmannia glutinosa plantlets. J. Plant Biol. 43:247–250.

    Article  Google Scholar 

  • Jaakola, L., K. Maatta-Riihinen, S. Karenlampi, and A. Hohtola. 2004. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, H.J., J.S. Kim, T.K. Hyun, J. Yang, H.H. Kang, J.C. Cho, H.M. Yeom, and M.J. Kim. 2013. In vitro antioxidant and antidiabetic activities of Rehmannia glutinosa tuberous root extracts. Sci. Asia 39:605–609.

    Article  Google Scholar 

  • Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809–1814.

    Google Scholar 

  • Kim, S.J., E.J. Hahn, and J.W. Heo. 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hort. 101:143–151.

    Article  Google Scholar 

  • Kinsella, J.E., E. Frankel, B. German, and J. Kanner. 1993. Possible mechanisms for the protective role of antioxidants in wine and plant foods. Food Technol. 47:85–89.

    CAS  Google Scholar 

  • Kozai, T., C. Kubota, and B.R. Jeong. 1997. Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tiss Organ Cult. 51:49–56.

    Article  Google Scholar 

  • Kumaran, A. and R.J. Karunakaran. 2007. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT-Food Sci. Technol. 40:344–352.

    Article  CAS  Google Scholar 

  • Lin, C.C. and C.H. Kao. 2000. Effect of NaCl stress in H2O2 metabolism in rice leaves. J. Plant Growth Regul. 30:151–155.

    Article  CAS  Google Scholar 

  • Machlin, L.J. and A. Bendich. 1987. Free radical tissue damage: Protective role of antioxidant nutrients. FASEB J. 1:441–445.

    CAS  PubMed  Google Scholar 

  • Mengxi, L., X. Zhigang, Y. Yang, and F. Yijie. 2011. Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell Tiss. Organ Cult. 106:1–10.

    Article  Google Scholar 

  • Moein, M.R., S. Moein, and S. Ahmadizadeh. 2008. Radical scavenging and reducing power of Salvia mirzayanii subfractions. Molecules 13:2804–2813.

    Article  CAS  PubMed  Google Scholar 

  • Muneer, S., E.J. Kim, S.P. Jeong, and H.L. Jeong. 2014. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int. J. Mol. Sci. 15:4657–4670.

    Article  PubMed Central  PubMed  Google Scholar 

  • Murashige, T. and F. Skoog. 1962. A revised medium of rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15:473–497.

    Article  CAS  Google Scholar 

  • Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.

    CAS  Google Scholar 

  • Nhut, D.T., T. Takamura, and H. Watanabe. 2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light emitting diodes (LEDs). Plant Cell Tiss. Organ Cult. 73:43–52.

    Article  CAS  Google Scholar 

  • Nishimura, T., K. Ohyama, E. Goto, and N. Inagaki. 2009. Concentration of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Sci. Hort. 122:134–137.

    Article  CAS  Google Scholar 

  • Park, S.U., Y.K. Kim, and S.Y. Lee. 2009. Improved in vitro plant regeneration and micropropagation of Rehmannia glutinosa L. J. Med. Plants Res. 3:31–34.

    CAS  Google Scholar 

  • Park, Y.G., J.E. Park, S.J. Hwang, and B.R. Jeong. 2012. Light source and CO2 concentration affect growth and anthocyanin content of lettuce under controlled environment. Hort. Environ. Biotechnol. 53:460–466.

    Article  CAS  Google Scholar 

  • Piatczak, E., I. Grzegorczyk-Karolak, and H. Wysokinska. 2014. Micropropagation of Rehmannia glutinosa Libosch.: Production of phenolics and flavonoids and evaluation of antioxidant activity. Acta Physiol. Plant. 36:1693–1702.

    Article  CAS  Google Scholar 

  • Reddy, N.S., S. Navanesan, S.K. Sinniah, N.A. Wahab, and K.S. Sim. 2012. Phenolic content, antioxidant effect and cytotoxic activity of Leea indica leaves. BMC Comp. Alter. Med. 12:128–134.

    Article  CAS  Google Scholar 

  • Samuoliene, G., R. Sirtautas, A. Brazaityte, and P. Duchovskis. 2012. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 134:1494–1499.

    Article  CAS  PubMed  Google Scholar 

  • Shah, K., R.G. Kumar, S. Verma, and R.S. Dubey. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161:1135–1144.

    Article  CAS  Google Scholar 

  • Sivakumar, G., J.W. Heo, T. Kozai, and K.Y. Peak. 2006. Effect of continuous or intermittent radiation on sweet potato plantlets in vitro. J. Hort. Sci. Biotechnol. 81:546–548.

    Google Scholar 

  • Stuefer, J.F. and H. Huber. 1998. Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia 117:1–8.

    Article  Google Scholar 

  • Sun, Q., K. Yoda, and H. Suzuki. 2005. Internal axial light conduction in the stems and roots of herbaceous plants. J. Expt. Bot. 56:191–203.

    CAS  Google Scholar 

  • Toyomasu, T., H. Tsuji, H. Yamane, M. Nakayama, I. Yamaguchi, N. Murofushi, N. Takahashi, and Y. Inoue. 1993. Light effects on endogenous levels of gibberellins in photoblastic lettuce seeds. J. Plant Growth Regul. 12:85–90.

    Article  CAS  Google Scholar 

  • Wheeler, R.M., C.L. Mackowiak, and J.C. Sager. 1991. Soybean stem growth under high-pressure sodium with supplemental blue lighting. Agron. J. 83:903–906.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X.H. and M.R. Davey. 1983. Shoot regeneration from mesophyll protoplasts and leaf explants of Rehmannia glutinosa. Plant Cell Rep. 2:55–57.

    CAS  PubMed  Google Scholar 

  • Zhan, L., Y. Li, J. Hu, L. Pang, and H. Fan. 2012. Browning inhibition and quality preservation of fresh-cut romaine lettuce exposed to high intensity light. Innov. Food Sci. Emerg. Technol. 14:70–76.

    Article  CAS  Google Scholar 

  • Zhang, R.X., M.X. Li, and Z.P. Jia. 2008. Rehmannia glutinosa: Review of botany, chemistry and pharmacology. J. Ethnopharm. 117:199–214.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Ryong Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivannan, A., Soundararajan, P., Halimah, N. et al. Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic. Environ. Biotechnol. 56, 105–113 (2015). https://doi.org/10.1007/s13580-015-0114-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0114-1

Additional key words

Navigation