Skip to main content
Log in

Influence of Microstructural Features on the Mechanical Behavior of Incoloy 825 Welds

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

This work deals with an investigation on the structure–property relationships of Incoloy 825 weldments. Incoloy 825 was successfully welded using gas tungsten arc welding and different filler wires. Interfacial and weld zone microstructures were characterized by optical microscopy, X-ray diffraction analysis, and scanning electron microscopy equipped with energy dispersive spectroscopy. Micro-hardness, tensile and Charpy impact tests were also conducted for the evaluation of the mechanical properties of the weldments. Ti-rich and Nb-rich phases were identified in the inter-dendritic regions of the weld metals. In the heat-affected zone of the weldments, grain growth and grain boundary thickening were observed. All the weldments displayed the ductile mode of fractures. ERNiCrMo-3 showed higher hardness, better toughness and tensile properties than the other weld metals. In addition, ERNiCrMo-3 indicated a higher impact resistance (112 J) compared to the base metal (94 J). Thus, ERNiCrMo-3 filler wire was recommended for welding alloy 825.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Li, Q. Wei, Y. Shi, Z. Zhu, D. Zhang, Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting. J. Mater. Sci. Technol. 31, 946–952 (2015). doi:10.1016/j.jmst.2014.09.020

    Article  Google Scholar 

  2. X. Xing, X. Di, B. Wang, The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal. J. Alloys Compd. 593, 110–116 (2014). doi:10.1016/j.jallcom.2013.12.224

    Article  Google Scholar 

  3. J.S. Kim, Y.I. Park, H.W. Lee, Effects of heat input on the pitting resistance of Inconel 625 welds by overlay welding. Met. Mater. Int. 21, 350–355 (2015). doi:10.1007/s12540-015-4245-9

    Article  Google Scholar 

  4. T.E. Abioyea, D.G. McCartney, A.T. Clarea, Laser cladding of Inconel 625 wire for corrosion protection. J. Mater. Process. Technol. 217, 232–240 (2015). doi:10.1016/j.jmatprotec.2014.10.024

    Article  Google Scholar 

  5. C.A. Maltin, A.M. Galloway, M. Mweemba, Microstructural evolution of Inconel 625 and Inconel 686CPT weld metal for clad carbon steel linepipe joints: a comparator study. Metall. Mater. Trans. A 45A, 3519–3532 (2014). doi:10.1007/s11661-014-2308-z

    Article  Google Scholar 

  6. M. Manikandan, N. Arivazhagan, M.N. Rao, G.M. Reddy, Microstructure and mechanical properties of alloy C-276 weldments fabricated by continuous and pulsed current gas tungsten arc welding techniques. J. Manufac. Process. 16, 563–572 (2014). doi:10.1016/j.jmapro.2014.08.002

    Article  Google Scholar 

  7. M. Manikandan, N. Arivazhagan, M.N. Rao, G.M. Reddy, Improvement of microstructure and mechanical behavior of gas tungsten arc weldments of alloy C-276 by current pulsing. Acta Metall. Sin. Engl. Lett. 28, 208–215 (2015). doi:10.1007/s40195-014-0186-4

    Article  Google Scholar 

  8. K.D. Ramkumar, R.J. Sai, V.S. Reddy, S. Gundla, T.H. Mohan, V. Saxena, N. Arivazhagan, Effect of filler wires and direct ageing on the microstructure and mechanical properties in the multi-pass welding of Inconel 718. J. Manufac. Process. 18, 23–45 (2015). doi:10.1016/j.jmapro.2015.01.001

    Article  Google Scholar 

  9. H.L. Lin, T.M. Wu, C.M. Cheng, Effects of flux precoating and process parameter on welding performance of Inconel 718 alloy TIG welds. J. Mater. Eng. Perform. 23, 125–132 (2014). doi:10.1007/s11665-013-0756-z

    Article  Google Scholar 

  10. K.D. Ramkumar, B.M. Kumar, M.G. Krishnan, S. Dev, A.J. Bhalodi, N. Arivazhagan, S. Narayanan, Studies on the weldability, microstructure and mechanical properties of activated flux TIG weldments of Inconel 718. Mater. Sci. Eng., A 639, 234–244 (2015). doi:10.1016/j.msea.2015.05.004

    Article  Google Scholar 

  11. J.N. DuPont, J.C. Lippold, S.D. Kiser, Welding Metallurgy and Weldability of Ni-Base Alloys (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  12. H. Akhiani, M. Nezakat, J.A. Szpunar, Evolution of deformation and annealing textures in Incoloy 800H/HT via different rolling paths and strains. Mater. Sci. Eng., A 614, 250–263 (2014). doi:10.1016/j.msea.2014.07.035

    Article  Google Scholar 

  13. S.A. Kumar, P. Sathiya, Experimental investigation of the A-TIG welding process of Incoloy 800H. Mater. Manufac. Process. 30, 1–6 (2015). doi:10.1080/10426914.2015.1019092

    Article  Google Scholar 

  14. H. Aytekin, Y. Akcin, Characterization of borided Incoloy 825 alloy. Mater. Des. 50, 515–521 (2013). doi:10.1016/j.matdes.2013.03.015

    Article  Google Scholar 

  15. A. Kermanpur, M. Shamanian, V.E. Yeganeh, Three-dimensional thermal simulation and experimental investigation of GTAW circumferentially butt-welded Incoloy 800 pipes. J. Mater. Process. Technol. 199, 295–303 (2008). doi:10.1016/j.jmatprotec.2007.08.009

    Article  Google Scholar 

  16. W.S. Chen, W. Kai, L.W. Tsay, J.J. Kai, The oxidation behavior of three different zones of welded Incoloy 800H alloy. Nucl. Eng. Des. 272, 92–98 (2014). doi:10.1016/j.nucengdes.2014.01.022

    Article  Google Scholar 

  17. K.D. Ramkumar, A. Singh, S. Raghuvanshi, A. Bajpai, T. Solanki, M. Arivarasu, N. Arivazhagan, S. Narayanan, Metallurgical and mechanical characterization of dissimilar welds of austenitic stainless steel and super-duplex stainless steel—a comparative study. J. Manufac. Process. 19, 212–232 (2015). doi:10.1016/j.jmapro.2015.04.005

    Article  Google Scholar 

  18. G. Sayiram, N. Arivazhagan, Microstructural characterization of dissimilar welds between Incoloy 800H and 321 austenitic stainless steel. Mater. Charact. 102, 180–188 (2015). doi:10.1016/j.matchar.2015.03.006

    Article  Google Scholar 

  19. J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels (Wiley, Hoboken, 2005)

    Google Scholar 

  20. S. Geng, J. Sun, L. Guo, H. Wang, Evolution of microstructure and corrosion behavior in 2205 duplex stainless steel GTA-welding joint. J. Manufac. Process. 19, 32–37 (2015). doi:10.1016/j.jmapro.2015.03.009

    Article  Google Scholar 

  21. K.D. Ramkumar, R. Sridhar, S. Periwal, S. Oza, V. Saxena, P. Hidad, N. Arivazhagan, Investigations on the structure—property relationships of electron beam welded Inconel 625 and UNS 32205. Mater. Des. 68, 158–166 (2015). doi:10.1016/j.matdes.2014.12.032

    Article  Google Scholar 

  22. Y. Cui, C.D. Lundin, Austenite-preferential corrosion attack in 316 austenitic stainless steel weld metals. Mater. Des. 28, 324–328 (2007). doi:10.1016/j.matdes.2005.05.022

    Article  Google Scholar 

  23. J.C. Lippold, Welding metallurgy and weldability (Wiley, Hoboken, 2015)

    Book  Google Scholar 

  24. A. Mortezaie, M. Shamanian, An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel. Int. J. Press. Vess. Pip. 116, 37–46 (2014). doi:10.1016/j.ijpvp.2014.01.002

    Article  Google Scholar 

  25. R. Shoja-Razavi, Laser beam welding of Waspaloy: characterization and corrosion behavior evaluation. Opt. Laser Technol. 82, 113–120 (2016). doi:10.1016/j.optlastec.2016.03.011

    Article  Google Scholar 

  26. J.D. Busch, J.J. Debarbadillo, M.J.M. Krane, Flux entrapment and titanium nitride defects in electroslag remelting of INCOLOY alloys 800 and 825. Metall. Mater. Trans. A 44A, 5295–5303 (2013). doi:10.1007/S11661-013-1659-1

    Article  Google Scholar 

  27. R. Sridhar, K. D. Ramkumar, N. Arivazhagan, Characterization of microstructure, strength, and toughness of dissimilar weldments of Inconel 625 and duplex stainless steel SAF 2205. Acta Metall. Sin. (Engl. Lett.), 27, 1018–1030 (2014). doi:10.1007/s40195-014-0116-5

  28. H. Wang, G. He, Effects of Nb/Cr on the cryogenic impact toughness of the deposited metal of ENiCrFe-9. Mater. Sci. Eng., A 672, 15–22 (2016)

    Article  Google Scholar 

  29. M. Sireesha, V. Shankar, S.K. Albert, S. Sundaresan, Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800. Mater. Sci. Eng., A 292(1), 74–82 (2000). doi:10.1016/S0921-5093(00)00969-2

    Article  Google Scholar 

  30. A. Moteshakker, I. Danaee, Microstructure and corrosion resistance of dissimilar weld-joints between duplex stainless steel 2205 and austenitic stainless steel 316L. J. Mater. Sci. Technol. 32, 282–290 (2016). doi:10.1016/j.jmst.2015.11.021

    Article  Google Scholar 

  31. H. Naffakha, M. Shamanian, F. Ashrafizadeh, Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657. J. Mater. Process. Technol. 209, 3628–3639 (2009). doi:10.1016/j.jmatprotec.2008.08.019

    Article  Google Scholar 

  32. K.D. Ramkumar, S. Oza, S. Periwal, N. Arivazhagan, R. Sridhar, S. Narayanan, Characterization of weld strength and toughness in the multi-pass welding of Inconel 625 and Super-duplex stainless steel UNS S32750. Ciên. Tecnol. Mater. 27(1), 41–52 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Kangazian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangazian, J., Sayyar, N. & Shamanian, M. Influence of Microstructural Features on the Mechanical Behavior of Incoloy 825 Welds. Metallogr. Microstruct. Anal. 6, 190–199 (2017). https://doi.org/10.1007/s13632-017-0353-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-017-0353-x

Keywords

Navigation