Skip to main content
Log in

Microstructure Analysis of High-Density 316L Stainless Steel Manufactured by Selective Laser Melting Process

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) is used to fabricate nearly fully dense 316L stainless steel (SS) samples in this study. A variety of advanced characterization techniques were conducted to identify dominant phases, important crystallographic features, microstructural features, and elemental composition. Porosity of the sample was found to be 0.02% which is the lowest porosity content reported for SLM-processed 316L SS. Microstructural analysis exhibits some columnar grains with epitaxial growth representing complete adhesion between the layers. Existence of some fine cellular grains inside the melt pools is an indication of rapid solidification during the printing process. The strength of this study lies in the addition of new crystallographic information such as lattice parameters of SLM-processed 316L. Finally, using information obtained from the literature, it was possible to better understand the effect of chosen process parameters to achieve nearly fully dense material in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58(9), 3303–3312 (2010)

    Article  CAS  Google Scholar 

  2. Q. Jia, D. Gu, Selective laser melting additive manufacturing of inconel 718 superalloy parts: densification microstructure and properties. J. Alloys Compd. 585, 713–721 (2014)

    Article  CAS  Google Scholar 

  3. I. Yadroitsev, L. Thivillon, Ph. Bertrand, I. Smurov, Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Appl. Surf. Sci. 254(4), 980–983 (2007)

    Article  CAS  Google Scholar 

  4. H. S. Park, N. H. Tran, A decision support system for selecting additive manufacturing technologies. In: Proceedings of the 2017 International Conference on Information System and Data Mining (ICISDM). (Charleston SC, April 2017), pp. 151–155

  5. N.R. Baddoo, Stainless steel in construction: a review of research, applications, challenges and opportunities. J. Constr. Steel Res. 64(11), 1199–1206 (2008)

    Article  Google Scholar 

  6. M. J. Nutt, G. L. Winters, Stainless steels for medical and surgical applications, ASTM International. STP1439, 276 (2003)

  7. J. Kotowski, D. Šnita, Fabrication and application of stainless-steel stamps for the preparation of microfluidic devices. Microelectron. Eng. 125, 83–88 (2014)

    Article  CAS  Google Scholar 

  8. Q. Zhang, S. Wang, Influence and application of stainless steel to modern sculpture. Appl. Mech. Mater. 620, 417–420 (2014)

    Article  Google Scholar 

  9. S. Ningshen, M. Sakairi, Corrosion degradation of AISI type 304L stainless steel for application in nuclear reprocessing plant. J. Solid State Electrochem. 19(12), 3533–3542 (2015)

    Article  CAS  Google Scholar 

  10. S. Wang, B. Yang, M. Zhang, H. Wu, The establishment and application of 316LN stainless steel database for AP1000 primary coolant pipes. Mater. Sci. Forum. 850, 341–347 (2016)

    Article  Google Scholar 

  11. M. Yakout, M. Elbestawi, S. Veldhuis, On the characterization of stainless steel 316L parts produced by selective laser melting. Int. J. Manuf. Tech. 95(5), 1953–1974 (2018)

    Article  Google Scholar 

  12. R. Casati, J. Lemke, M. Vedani, Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting. J. Mater. Sci. Technol. 32(8), 738–744 (2016)

    Article  CAS  Google Scholar 

  13. C. Qiu, M.A. Kindi, A.S. Aladawi, I.A. Hatmi, A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Sci. Rep. 8(1), 7785–7785 (2018)

    Article  Google Scholar 

  14. Z. Sun, X. Tan, S.B. Tor, C.K. Chua, Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater. 10(4), 127–136 (2018)

    Article  CAS  Google Scholar 

  15. W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng, S. Yusheng, Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J. Mater. Process. Technol. 214(11), 2660–2667 (2014)

    Article  CAS  Google Scholar 

  16. M. Yoo, A. King, M. Yoo, Intergranular fracture by slip/grain boundary interaction. Mater. Trans. A. 21(a), 2431–2436 (1990)

    Article  Google Scholar 

  17. Y. Zhong, L. Leifeng, S. Wikman, D. Cui, Z. Shen, Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J. Nucl. Mater. 470, 170–178 (2016)

    Article  CAS  Google Scholar 

  18. J.-P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf Technol. 56(2), 730–759 (2007)

    Article  Google Scholar 

  19. M. Zhang, C.-N. Sun, X. Zhang, J. Wei, D. Hardacre, H. Li, Predictive models for fatigue property of laser powder bed fusion stainless steel 316L. Mater. Des. 145, 42–54 (2018)

    Article  CAS  Google Scholar 

  20. M. Zhang, C.-N. Sun, X. Zhang, P.C. Goh, J. Wei, D. Hardacre, H. Li, Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L. Mat. Sci. Eng: A. 703, 251–261 (2017)

    Article  CAS  Google Scholar 

  21. H. Choo, K.-L. Sham, J. Bohling, A. Ngo, X. Xiao, Y. Ren, P.J. Depond, M.J. Matthews, E. Garlea, Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel. Mater. Des. 164, 107534 (2019)

    Article  CAS  Google Scholar 

  22. J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, J. Sienz, Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Tech. 76, 869–79 (2015)

    Article  Google Scholar 

  23. S. Liu, Balling behavior of selective laser melting (Selective laser melting) magnesium alloy. Materials. 13, 3632 (2020)

    Article  Google Scholar 

  24. D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60, 3849–3860 (2012)

    Article  CAS  Google Scholar 

  25. R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process. Int. J. Adv. Manuf. Technol. 59, 1025–1035 (2012)

    Article  Google Scholar 

  26. E. Yasa, J.P. Kruth, Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Elsevier Procedia Eng. 19, 389–395 (2011)

    Article  CAS  Google Scholar 

  27. W.M. Tucho, V.H. Lysne, H. Austbø, A. Sjolyst-Kverneland, V. Hansen, Investigation of effects of process parameters on microstructure and Hardness of selective laser melting manufactured SS316L. J. Alloys Compd. 740, 910–925 (2018)

    Article  CAS  Google Scholar 

  28. Q.B. Nguyen, Z. Zhu, F.L. Ng, B.W. Chua, S.M.L. Nai, J. Wei, High Mechanical strengths and ductility of stainless steel 304L fabricated using selective laser melting. J. Mater. Sci. Technol. 35(2), 388–394 (2019)

    Article  Google Scholar 

  29. J. Suryawanshi, K.G. Prashanth, U. Ramamurty, Mechanical behavior of selective laser melted 316L stainless steel. Mat. Sci. Eng. A. 696, 113–121 (2017)

    Article  CAS  Google Scholar 

  30. E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, Effect of selective laser melting (Selective laser melting) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J. Mater. Process. Technol. 249, 255–263 (2017)

    Article  CAS  Google Scholar 

  31. T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, E. Chlebus, Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting. Mat. Sci. Eng. A. 718, 64–73 (2018)

    Article  CAS  Google Scholar 

  32. T. Deb Roy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components: process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)

    Article  CAS  Google Scholar 

  33. A.H. Puichaud, C. Flament, A. Chniouel, F. Lomello, E. Rouesne, P.F. Giroux, H. Maskrot, F. Schuster, J.L. Béchade, Microstructure and mechanical properties relationship of additively manufactured 316L stainless steel by selective laser melting. EPJ N. 5, 23 (2019)

    Google Scholar 

  34. J. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, B. Stucker, Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog. Addit. Manuf. 2(3), 157–167 (2017)

    Article  Google Scholar 

  35. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson- Heid, A. De, W. Zhang, Additive manufacturing of metallic components: process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)

    Article  CAS  Google Scholar 

  36. K.G. Prashanth, S. Scudino, T. Maity, J. Das, J. Eckert, Is the energy density a reliable parameter for materials synthesis by selective laser melting? Meter. Res. Lett. 5, 386–390 (2017)

    Article  CAS  Google Scholar 

  37. L.N. Carter, X. Wang, N. Read, R. Khan, M. Aristizabal, K. Essa, M.M. Attallah, Process optimisation of selective laser melting using energy density model for nickel-based superalloys. Mater. Sci. Technol. 32, 657–661 (2016)

    Article  CAS  Google Scholar 

  38. Standard Practice for Microetching Metals and Alloys, ASTM International E407-07, West Conshohocken, (2015)

  39. Standard Test Methods for Determining Average Grain Size, ASTM International E112- 13, West Conshohocken, (2013)

  40. Standard Test Method for Metallic and Inorganic Coatings; Metal powders and metal powder products, ASTM B311-17, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, 2010, vol. 02.05

  41. J.P. Choi, G.H. Shin, M. Brochu, Y.J. Kim, S.S. Yang, K.T. Kim, D.Y. Yang, C.W. Lee, J.H. Yul, Behavior of 316L stainless steel parts fabricated by selective laser melting by variation in laser energy density. Mater. Trans. 57, 1952–1959 (2016)

    Article  CAS  Google Scholar 

  42. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company Inc., Massachusetts, USA, 1959)

    Google Scholar 

  43. D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng, X. Li, Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting mater. Mater. Des. 152, 88–101 (2018)

    Article  CAS  Google Scholar 

  44. H. Gong, D. Snelling, K. Kardel, A. Carrano, Comparison of stainless steel 316L parts made by FDM- and SLM-based additive manufacturing processes. JOM. 71, 880–885 (2019)

    Article  CAS  Google Scholar 

  45. X. Yang, Y. Liu, J. Ye, R. Wang, T. Zhou, B. Mao, Enhanced mechanical properties and formability of 316L stainless steel materials 3D-printed using selective laser melting. Int. J. Miner. Metall. Mater. 26, 1396–1404 (2019)

    Article  CAS  Google Scholar 

  46. M. Kazemipour, M. Mohammadi, E. Mfoumou, A.M. Nasiri, Microstructure and corrosion characteristics of selective laser-melted 316L stainless steel: the impact of process-induced porosities. JOM. 71, 3230–3240 (2019)

    Article  CAS  Google Scholar 

  47. P. Krakhmalev, G. Fredrikhsson, S. Krister, I. Yadroitsev, I. Yadroitsava, M. Thuvander, R. Peng, Microstructure, solidification texture, and thermal stability of 316 L stainless steel manufactured by laser powder bed fusion. Metals. 8(8), 643 (2018)

    Article  Google Scholar 

  48. A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, T. Niendorf, On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng. Fract. Mech. 120, 15–25 (2014)

    Article  Google Scholar 

  49. J.M. Jeon, J.M. Park, J. Yu, J.G. Kim, Y. Seong, S.H. Park, H.S. Kim, Effects of microstructure and internal defects on mechanical anisotropy and asymmetry of selective laser-melted 316L austenitic stainless steel. Mater. Sci. Eng. A. 763, 138152 (2019)

    Article  CAS  Google Scholar 

  50. J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu, J.C. Feng, Effect of location on microstructure and mechanical properties of additive layer manufactured inconel 625 using gas tungsten arc welding. Mater. Sci. Eng. A. 676, 395–405 (2016)

    Article  CAS  Google Scholar 

  51. J. Yang, H. Yu, H. Yang, F. Li, Z. Wang, X. Zeng, Prediction of microstructure in selective laser melted Ti-6Al-4V alloy by cellular automaton. J. Alloys Compd. 748, 281 (2018)

    Article  CAS  Google Scholar 

  52. S.D. Jadhav, S. Dadbakhsh, L. Goossens, J.-P. Kruth, J. Van Humbeeck, K. Vanmeensel, Influence of selective laser melting process parameters on texture evolution in pure copper. J. Mater. Process. Technol. 270, 47–58 (2019)

    Article  CAS  Google Scholar 

  53. L. Thijs, K. Kempen, J.-P. Kruth, V.J. Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 61(5), 1809–1819 (2012)

    Article  Google Scholar 

  54. T. Niendorf, S. Leuders, A. Reimer, H. Richard, T. Tröster, D. Schwarze, Highly anisotropic steel processed by selective laser melting. Metall. Mater. Trans. B. 44(4), 794–796 (2013)

    Article  CAS  Google Scholar 

  55. K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A. 625, 221–229 (2015)

    Article  CAS  Google Scholar 

  56. O.O. Salman, F. Brenne, T. Niendorf, J. Eckert, K.G. Prashanth, T. He, S. Scudino, Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. J. Manuf. Process. 45, 255–261 (2019)

    Article  Google Scholar 

  57. J.-P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, J. V. Humbeeck, Part and material properties in selective laser melting of metals In: 16th International Symposium on Electromachining. Proceeding of 16th International Symposium on Electromachining, Shanghai (2010)

  58. R. Rashid, S.H. Masood, D. Ruan, S. Palanisamy, R.A. Rashid, M. Brandt, Effect of scan strategy on density and metallurgical properties of 17–4PH parts printed by selective laser melting (Selective laser melting). J. Mater. Process. Tech. 249, 502–511 (2017)

    Article  CAS  Google Scholar 

  59. D. Wang, W. Shibiao, Y. Yongqiang, D. Wenhao, D. Shishi, W. Zhi, L. Sheng, The effect of a scanning strategy on the residual stress of 316L steel parts fabricated by selective laser melting (selective laser melting). Materials. 11(10), 1821 (2018)

    Article  Google Scholar 

  60. D. Wang, C. Song, Y. Yang, Y. Bai, Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Des. 100, 291–299 (2016)

    Article  CAS  Google Scholar 

  61. T. Peng, C. Chen, Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting. Int. J. Precis. Eng. Manuf. Green Technol. 5(1), 55–62 (2018)

    Article  Google Scholar 

  62. P. Lu, Z. Cheng-Lin, L. Hai-Yi, W. Liang, L. Tong, A new two-step selective laser remelting of 316L stainless steel: process, density, surface roughness, mechanical properties, microstructure. Mater. Res. Expr. 7(5), 056503 (2020)

    Article  CAS  Google Scholar 

  63. Z. Sun, X. Tan, S. Beng Tor, W. Yee Yeong, Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater. Des. 104, 197–204 (2016)

    Article  CAS  Google Scholar 

  64. Q. Chao, S. Thomas, N. Birbilis, P. Cizek, P.D. Hodgson, D. Fabijanic, The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel. Mater. Sci. Eng. A. 821, 0921–5093 (2021)

    Article  Google Scholar 

  65. A. Mertens, S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire, J. Lecomte-Beckers, Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures. Powder Metall. 57(3), 184–189 (2014)

    Article  CAS  Google Scholar 

  66. H.D. Carlton, A. Haboub, G.F. Gallegos, D.Y. Parkinson, A.A. MacDowell, Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater. Sci. Eng. A. 651, 406–414 (2016)

    Article  CAS  Google Scholar 

  67. W.S. Shin, B. Son, W. Song, H. Sohn, H. Jang, Y.J. Kim, C. Park, Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting. Mater. Sci. Eng. A. 806, 140805 (2021)

    Article  CAS  Google Scholar 

  68. I. Yadroitsev, I. Smurov, Selective laser melting technology: from the single laser melted track stability to 3d parts of complex shape. Phys Procedia. 5, 551–560 (2010)

    Article  Google Scholar 

  69. S. Dadbakhsh, L. Hao, N. Sewell, Effect of selective laser melting layout on the quality of stainless-steel parts. Rapid Prototyp J. 18, 241–249 (2012)

    Article  Google Scholar 

  70. U.S. Bertoli, A.J. Wolfer, M.J. Matthews, J.P.R. Delplanque, J.M. Schoenung, On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater. Des. 113, 331–340 (2017)

    Article  Google Scholar 

  71. W. Chen, G. Yin, Z. Feng, X. Liao, Effect of powder feedstock on microstructure and mechanical properties of the 316L stainless steel fabricated by selective laser melting. Metals. 8(9), 729 (2018)

    Article  Google Scholar 

  72. H. Yu, J. Yang, J. Yin, Z. Wang, X. Zeng, Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel. Mater. Sci. Eng. A. 695, 92–100 (2017)

    Article  CAS  Google Scholar 

  73. N. Takata, R. Nishida, A. Suzuki, M. Kobashi, M. Kato, Crystallographic features of microstructure in maraging steel fabricated by selective laser melting. Metals. 8(6), 440 (2018)

    Article  Google Scholar 

  74. X. Ni, D. Kong, Y. Wen, L. Zhang, W. Wu, B. He, L. Lu, D. Zhu, Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting. Int. J. Miner. Metall. Mater. 26, 319–328 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank NDSU Electron Microscopy Center, for microstructural characterization using SEM, XRD, and transmission electron microscopy. This study was partially funded by the ND EPSCoR Seed Award to collect preliminary data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fardad Azarmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ara, I., Azarmi, F. & Tangpong, X.W. Microstructure Analysis of High-Density 316L Stainless Steel Manufactured by Selective Laser Melting Process. Metallogr. Microstruct. Anal. 10, 754–767 (2021). https://doi.org/10.1007/s13632-021-00798-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00798-8

Keywords

Navigation