Skip to main content
Log in

What Twin Studies Tell Us About Brain Responses to Food Cues

  • Metabolism (CJ Billington, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Functional magnetic resonance imaging (fMRI) using visual food cues provides insight into brain regulation of appetite in humans. This review sought evidence for genetic determinants of these responses.

Recent Findings

Echoing behavioral studies of food cue responsiveness, twin study approaches detect significant inherited influences on brain response to food cues. Both polygenic (whole genome) factors and polymorphisms in single genes appear to impact appetite regulation, particularly in brain regions related to satiety perception. Furthermore, genetic confounding might underlie findings linking obesity to stereotypical response patterns on fMRI, i.e., associations with obesity may actually reflect underlying inherited susceptibilities rather than acquired levels of adiposity.

Summary

Insights from twin studies show that genes powerfully influence brain regulation of appetite, emphasizing the role of inherited susceptibility factors in obesity risk. Future research to delineate mechanisms of inherited obesity risk could lead to novel or more targeted interventional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance or •• Of major importance

  1. Yang W, Kelly T, He J. Genetic epidemiology of obesity. Epidemiol Rev. 2007;29:49–61. https://doi.org/10.1093/epirev/mxm004.

    Article  PubMed  Google Scholar 

  2. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G, et al. The response to long-term overfeeding in identical twins. N Engl J Med. 1990;322(21):1477–82.

    Article  CAS  PubMed  Google Scholar 

  3. •• Melhorn SJ, Mehta S, Kratz M, Tyagi V, Webb MF, Noonan CJ, et al. Brain regulation of appetite in twins. Am J Clin Nutr. 2016;103(2):314–22. https://doi.org/10.3945/ajcn.115.121095. Demonstrates inherited influence on brain response to high-calorie food cues after eating as well as meal-induced reductions in brain response to high-calorie food cues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carnell S, Haworth CM, Plomin R, Wardle J. Genetic influence on appetite in children. Int J Obes. 2008;32(10):1468–73.

    Article  CAS  Google Scholar 

  5. Schur E, Noonan C, Polivy J, Goldberg J, Buchwald D. Genetic and environmental influences on restrained eating behavior. Int J Eat Disord. 2009;42(8):765–72.

    Article  PubMed  PubMed Central  Google Scholar 

  6. de Castro JM, Lilenfeld LR. Influence of heredity on dietary restraint, disinhibition, and perceived hunger in humans. Nutrition. 2005;21(4):446–55.

    Article  PubMed  Google Scholar 

  7. de Castro JM. Heredity influences the dietary energy density of free-living humans. Physiol Behav. 2006;87(1):192–8.

    Article  PubMed  Google Scholar 

  8. Stice E, Spoor S, Bohon C, Small DM. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science. 2008;322(5900):449–52.

    Article  CAS  PubMed  Google Scholar 

  9. Schur EA, Kleinhans NM, Goldberg J, Buchwald D, Schwartz MW, Maravilla K. Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus. Int J Obes Relat Metab Disord. 2009;33(6):653–61.

    Article  CAS  Google Scholar 

  10. Uher R, Treasure J, Heining M, Brammer MJ, Campbell IC. Cerebral processing of food-related stimuli: effects of fasting and gender. Behav Brain Res. 2006;169(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  11. Killgore WD, Young AD, Femia LA, Bogorodzki P, Rogowska J, Yurgelun-Todd DA. Cortical and limbic activation during viewing of high- versus low-calorie foods. NeuroImage. 2003;19(4):1381–94.

    Article  PubMed  Google Scholar 

  12. Cornier MA, Von Kaenel SS, Bessesen DH, Tregellas JR. Effects of overfeeding on the neuronal response to visual food cues. Am J Clin Nutr. 2007;86(4):965–71.

    CAS  PubMed  Google Scholar 

  13. Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H, et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. NeuroImage. 2007;37(2):410–21.

    Article  PubMed  Google Scholar 

  14. Toepel U, Knebel JF, Hudry J, le Coutre J, Murray MM. The brain tracks the energetic value in food images. NeuroImage. 2009;44(3):967–74.

    Article  PubMed  Google Scholar 

  15. Goldstone AP, de Hernandez CGP, Beaver JD, Muhammed K, Croese C, Bell G, et al. Fasting biases brain reward systems towards high-calorie foods. Eur J Neurosci. 2009;30(8):1625–35.

    Article  PubMed  Google Scholar 

  16. Mehta S, Melhorn SJ, Smeraglio A, Tyagi V, Grabowski T, Schwartz MW, et al. Regional brain response to visual food cues is a marker of satiety that predicts food choice. Am J Clin Nutr. 2012;96(5):989–99. https://doi.org/10.3945/ajcn.112.042341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bruce AS, Holsen LM, Chambers RJ, Martin LE, Brooks WM, Zarcone JR, et al. Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. Int J Obes. 2010;34(10):1494–500. https://doi.org/10.1038/ijo.2010.84.

    Article  CAS  Google Scholar 

  18. Baicy K, London ED, Monterosso J, Wong ML, Delibasi T, Sharma A, et al. Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proc Natl Acad Sci U S A. 2007;104(46):18276–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farooqi IS, Bullmore E, Keogh J, Gillard J, O'Rahilly S, Fletcher PC. Leptin regulates striatal regions and human eating behavior. Science. 2007;317(5843):1355.

    Article  CAS  PubMed  Google Scholar 

  20. De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA, et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011;14(5):700–6. https://doi.org/10.1016/j.cmet.2011.09.010.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guthoff M, Grichisch Y, Canova C, Tschritter O, Veit R, Hallschmid M, et al. Insulin modulates food-related activity in the central nervous system. J Clin Endocrinol Metab. 2010;95(2):748–55.

    Article  CAS  PubMed  Google Scholar 

  22. van Bloemendaal L, IJ RG, Ten Kulve JS, Barkhof F, Konrad RJ, Drent ML, et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes. 2014;63(12):4186–96. https://doi.org/10.2337/db14-0849.

    Article  PubMed  Google Scholar 

  23. Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7(5):400–9.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest. 2008;118(7):2583–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stoeckel LE, Weller RE, Cook EW, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage. 2008;41(2):636–47.

    Article  PubMed  Google Scholar 

  26. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol. 2008;117(4):924–35.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dimitropoulos A, Tkach J, Ho A, Kennedy J. Greater corticolimbic activation to high-calorie food cues after eating in obese vs. normal-weight adults. Appetite. 2012;58(1):303–12. https://doi.org/10.1016/j.appet.2011.10.014.

    Article  PubMed  Google Scholar 

  28. Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev. 2012;13(1):43–56. https://doi.org/10.1111/j.1467-789X.2011.00927.x.

    Article  CAS  PubMed  Google Scholar 

  29. Bouchard C, Tremblay A. Genetic influences on the response of body fat and fat distribution to positive and negative energy balances in human identical twins. J Nutr. 1997;127(5 Suppl):943S–7S.

    CAS  PubMed  Google Scholar 

  30. Carlin JB, Gurrin LC, Sterne JA, Morley R, Dwyer T. Regression models for twin studies: a critical review. Int J Epidemiol. 2005;34(5):1089–99.

    Article  PubMed  Google Scholar 

  31. Schachter S. Obesity and eating. Internal and external cues differentially affect the eating behavior of obese and normal subjects. Science. 1968;161(843):751–6.

    Article  CAS  PubMed  Google Scholar 

  32. Wardle J, Guthrie CA, Sanderson S, Rapoport L. Development of the Children’s Eating Behaviour Questionnaire. J Child Psychol Psychiatry. 2001;42(7):963–70.

    Article  CAS  PubMed  Google Scholar 

  33. Carnell S, Wardle J. Measuring behavioural susceptibility to obesity: validation of the child eating behaviour questionnaire. Appetite. 2007;48(1):104–13. https://doi.org/10.1016/j.appet.2006.07.075.

    Article  PubMed  Google Scholar 

  34. Llewellyn CH, van Jaarsveld CH, Johnson L, Carnell S, Wardle J. Development and factor structure of the Baby Eating Behaviour Questionnaire in the Gemini birth cohort. Appetite. 2011;57(2):388–96. https://doi.org/10.1016/j.appet.2011.05.324.

    Article  PubMed  Google Scholar 

  35. Van Strien T, Frijters JE, Bergers GP, Defares PB. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int J Eat Disord. 1986;5:295–315.

    Article  Google Scholar 

  36. Stunkard AJ, Messick S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res. 1985;29(1):71–83.

    Article  CAS  PubMed  Google Scholar 

  37. Dubois L, Diasparra M, Bedard B, Kaprio J, Fontaine-Bisson B, Tremblay R, et al. Genetic and environmental influences on eating behaviors in 2.5- and 9-year-old children: a longitudinal twin study. Int J Behav Nutr Phys Act. 2013;10:134. https://doi.org/10.1186/1479-5868-10-134.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Llewellyn CH, van Jaarsveld CH, Johnson L, Carnell S, Wardle J. Nature and nurture in infant appetite: analysis of the Gemini twin birth cohort. Am J Clin Nutr. 2010;91(5):1172–9. https://doi.org/10.3945/ajcn.2009.28868.

    Article  CAS  PubMed  Google Scholar 

  39. Sung J, Lee K, Song YM, Lee MK, Lee DH. Heritability of eating behavior assessed using the DEBQ (Dutch Eating Behavior Questionnaire) and weight-related traits: the Healthy Twin Study. Obesity. 2010;18(5):1000–5. https://doi.org/10.1038/oby.2009.389.

    Article  PubMed  Google Scholar 

  40. Neale BM, Mazzeo SE, Bulik CM. A Twin study of dietary restraint, disinhibition and hunger: an examination of the eating inventory (three factor eating questionnaire). Twin Res. 2003;6(6):471–8.

    Article  PubMed  Google Scholar 

  41. Tholin S, Rasmussen F, Tynelius P, Karlsson J. Genetic and environmental influences on eating behavior: the Swedish Young Male Twins Study. Am J Clin Nutr. 2005;81(3):564–9.

    CAS  PubMed  Google Scholar 

  42. Keskitalo K, Tuorila H, Spector TD, Cherkas LF, Knaapila A, Kaprio J, et al. The Three-Factor Eating Questionnaire, body mass index, and responses to sweet and salty fatty foods: a twin study of genetic and environmental associations. Am J Clin Nutr. 2008;88(2):263–71.

    CAS  PubMed  Google Scholar 

  43. Epstein LH, Temple JL, Neaderhiser BJ, Salis RJ, Erbe RW, Leddy JJ. Food reinforcement, the dopamine D2 receptor genotype, and energy intake in obese and nonobese humans. Behav Neurosci. 2007;121(5):877–86. https://doi.org/10.1037/0735-7044.121.5.877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med. 1997;337(13):869–73. https://doi.org/10.1056/NEJM199709253371301.

    Article  CAS  PubMed  Google Scholar 

  45. Crossman A, Anne Sullivan D, Benin M. The family environment and American adolescents’ risk of obesity as young adults. Soc Sci Med. 2006;63(9):2255–67. https://doi.org/10.1016/j.socscimed.2006.05.027.

    Article  PubMed  Google Scholar 

  46. Whitaker KL, Jarvis MJ, Beeken RJ, Boniface D, Wardle J. Comparing maternal and paternal intergenerational transmission of obesity risk in a large population-based sample. Am J Clin Nutr. 2010;91(6):1560–7. https://doi.org/10.3945/ajcn.2009.28838.

    Article  CAS  PubMed  Google Scholar 

  47. Burke V, Beilin LJ, Dunbar D. Family lifestyle and parental body mass index as predictors of body mass index in Australian children: a longitudinal study. Int J Obes Relat Metab Disord. 2001;25(2):147–57. https://doi.org/10.1038/sj.ijo.0801538.

    Article  CAS  PubMed  Google Scholar 

  48. Magarey AM, Daniels LA, Boulton TJ, Cockington RA. Predicting obesity in early adulthood from childhood and parental obesity. Int J Obes Relat Metab Disord. 2003;27(4):505–13. https://doi.org/10.1038/sj.ijo.0802251.

    Article  CAS  PubMed  Google Scholar 

  49. Epstein LH, Yokum S, Feda DM, Stice E. Food reinforcement and parental obesity predict future weight gain in non-obese adolescents. Appetite. 2014;82:138–42. https://doi.org/10.1016/j.appet.2014.07.018.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fisher JO, Birch LL. Restricting access to foods and children’s eating. Appetite. 1999;32(3):405–19. https://doi.org/10.1006/appe.1999.0231.

    Article  CAS  PubMed  Google Scholar 

  51. Fisher JO, Birch LL. Eating in the absence of hunger and overweight in girls from 5 to 7 y of age. Am J Clin Nutr. 2002;76(1):226–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Faith MS, Berkowitz RI, Stallings VA, Kerns J, Storey M, Stunkard AJ. Eating in the absence of hunger: a genetic marker for childhood obesity in prepubertal boys? Obesity. 2006;14(1):131–8. https://doi.org/10.1038/oby.2006.16.

    Article  PubMed  Google Scholar 

  53. Francis LA, Ventura AK, Marini M, Birch LL. Parent overweight predicts daughters’ increase in BMI and disinhibited overeating from 5 to 13 years. Obesity. 2007;15(6):1544–53. https://doi.org/10.1038/oby.2007.183.

    Article  PubMed  PubMed Central  Google Scholar 

  54. de Lauzon-Guillain B, Romon M, Musher-Eizenman D, Heude B, Basdevant A, Charles MA. Cognitive restraint, uncontrolled eating and emotional eating: correlations between parent and adolescent. Matern Child Nutr. 2009;5(2):171–8. https://doi.org/10.1111/j.1740-8709.2008.00164.x.

    Article  PubMed  Google Scholar 

  55. Elfhag K, Linne Y. Gender differences in associations of eating pathology between mothers and their adolescent offspring. Obes Res. 2005;13(6):1070–6. https://doi.org/10.1038/oby.2005.125.

    Article  PubMed  Google Scholar 

  56. Provencher V, Perusse L, Bouchard L, Drapeau V, Bouchard C, Rice T, et al. Familial resemblance in eating behaviors in men and women from the Quebec Family Study. Obes Res. 2005;13(9):1624–9.

    Article  PubMed  Google Scholar 

  57. Elfhag K, Tynelius P, Rasmussen F. Family links of eating behaviour in normal weight and overweight children. Int J Pediatr Obes. 2010;5(6):491–500. https://doi.org/10.3109/17477160903497001.

    Article  PubMed  Google Scholar 

  58. Fisher JO, Cai G, Jaramillo SJ, Cole SA, Comuzzie AG, Butte NF. Heritability of hyperphagic eating behavior and appetite-related hormones among Hispanic children. Obesity. 2007;15(6):1484–95. https://doi.org/10.1038/oby.2007.177.

    Article  PubMed  Google Scholar 

  59. Steinle NI, Hsueh WC, Snitker S, Pollin TI, Sakul H, St Jean PL, et al. Eating behavior in the Old Order Amish: heritability analysis and a genome-wide linkage analysis. Am J Clin Nutr. 2002;75(6):1098–106.

    CAS  PubMed  Google Scholar 

  60. Loos RJ, Yeo GS. The bigger picture of FTO: the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10(1):51–61. https://doi.org/10.1038/nrendo.2013.227.

    Article  CAS  PubMed  Google Scholar 

  61. Wardle J, Llewellyn C, Sanderson S, Plomin R. The FTO gene and measured food intake in children. Int J Obes. 2009;33(1):42–5.

    Article  CAS  Google Scholar 

  62. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359(24):2558–66.

    Article  CAS  PubMed  Google Scholar 

  63. Speakman JR, Rance KA, Johnstone AM. Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity (Silver Spring). 2008;16(8):1961–5.

    Article  CAS  Google Scholar 

  64. Timpson NJ, Emmett PM, Frayling TM, Rogers I, Hattersley AT, McCarthy MI, et al. The fat mass- and obesity-associated locus and dietary intake in children. Am J Clin Nutr. 2008;88(4):971–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sonestedt E, Roos C, Gullberg B, Ericson U, Wirfalt E, Orho-Melander M. Fat and carbohydrate intake modify the association between genetic variation in the FTO genotype and obesity. Am J Clin Nutr. 2009;90(5):1418–25. https://doi.org/10.3945/ajcn.2009.27958.

    Article  CAS  PubMed  Google Scholar 

  66. Lee HJ, Kim IK, Kang JH, Ahn Y, Han BG, Lee JY, et al. Effects of common FTO gene variants associated with BMI on dietary intake and physical activity in Koreans. Clin Chim Acta. 2010;411(21–22):1716–22. https://doi.org/10.1016/j.cca.2010.07.010.

    Article  CAS  PubMed  Google Scholar 

  67. Park SL, Cheng I, Pendergrass SA, Kucharska-Newton AM, Lim U, Ambite JL, et al. Association of the FTO obesity risk variant rs8050136 with percentage of energy intake from fat in multiple racial/ethnic populations: the PAGE study. Am J Epidemiol. 2013;178(5):780–90. https://doi.org/10.1093/aje/kwt028.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ahmad T, Lee IM, Pare G, Chasman DI, Rose L, Ridker PM, et al. Lifestyle interaction with fat mass and obesity-associated (FTO) genotype and risk of obesity in apparently healthy U.S. women. Diabetes Care. 2011;34(3):675–80. https://doi.org/10.2337/dc10-0948.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tanofsky-Kraff M, Han JC, Anandalingam K, Shomaker LB, Columbo KM, Wolkoff LE, et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am J Clin Nutr. 2009;90(6):1483–8. https://doi.org/10.3945/ajcn.2009.28439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Strachan E, Hunt C, Afari N, Duncan G, Noonan C, Schur E, et al. University of Washington Twin Registry: poised for the next generation of twin research. Twin Res Hum Genet. 2013;16(1):455–62. https://doi.org/10.1017/thg.2012.124.

    Article  PubMed  Google Scholar 

  71. Bouchard C, Tremblay A, Despres JP, Theriault G, Nadeau A, Lupien PJ, et al. The response to exercise with constant energy intake in identical twins. Obes Res. 1994;2(5):400–10.

    Article  CAS  PubMed  Google Scholar 

  72. Bouchard C. Heredity and the path to overweight and obesity. Med Sci Sports Exerc. 1991;23(3):285–91.

    Article  CAS  PubMed  Google Scholar 

  73. Schur EA, Kleinhans NM, Goldberg J, Buchwald D, Schwartz MW, Maravilla K. Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus. Int J Obes. 2009;33(6):653–61. https://doi.org/10.1038/ijo.2009.56.

    Article  CAS  Google Scholar 

  74. •• Doornweerd S, De Geus EJ, Barkhof F, Van Bloemendaal L, Boomsma DI, Van Dongen J et al. Brain reward responses to food stimuli among female monozygotic twins discordant for BMI. Brain Imaging Behav. 2017. https://doi.org/10.1007/s11682-017-9711-1. Heavier twins did not have different responses to visual food cues in selected brain regions regulating appetite. The study suggests that genetic confounding is present in studies showing altered brain response to visual food cues in obesity (i.e., that inherited factors rather than adiposity per se explain the findings).

  75. Paaby AB, Rockman MV. The many faces of pleiotropy. Trends Genet. 2013;29(2):66–73. https://doi.org/10.1016/j.tig.2012.10.010.

    Article  CAS  PubMed  Google Scholar 

  76. Stice E, Yokum S, Burger KS, Epstein LH, Small DM. Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. J Neurosci. 2011;31(12):4360–6. https://doi.org/10.1523/JNEUROSCI.6604-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Carnell S, Benson L, Chang KV, Wang Z, Huo Y, Geliebter A, et al. Neural correlates of familial obesity risk and overweight in adolescence. NeuroImage. 2017;159:236–47. https://doi.org/10.1016/j.neuroimage.2017.07.052.

    Article  PubMed  Google Scholar 

  78. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  79. • Rapuano KM, Zieselman AL, Kelley WM, Sargent JD, Heatherton TF, Gilbert-Diamond D. Genetic risk for obesity predicts nucleus accumbens size and responsivity to real-world food cues. Proc Natl Acad Sci U S A. 2017;114(1):160–5. https://doi.org/10.1073/pnas.1605548113. Establishes that children with high-risk genotypes at the rs9939609 locus in the fat mass- and obesity-associated gene ( FTO ) have greater nucleus accumbens size and responsivity to food commercials, indicating enhanced motivation and responsiveness to common environmental food stimuli.

    Article  CAS  PubMed  Google Scholar 

  80. Wiemerslage L, Nilsson EK, Solstrand Dahlberg L, Ence-Eriksson F, Castillo S, Larsen AL, et al. An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images. Eur J Neurosci. 2016;43(9):1173–80. https://doi.org/10.1111/ejn.13177.

    Article  PubMed  Google Scholar 

  81. Kuhn AB, Feis DL, Schilbach L, Kracht L, Hess ME, Mauer J, et al. FTO gene variant modulates the neural correlates of visual food perception. NeuroImage. 2016;128:21–31. https://doi.org/10.1016/j.neuroimage.2015.12.049.

    Article  PubMed  Google Scholar 

  82. Heni M, Kullmann S, Veit R, Ketterer C, Frank S, Machicao F, et al. Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Mol Metab. 2014;3(2):109–13. https://doi.org/10.1016/j.molmet.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  83. Sevgi M, Rigoux L, Kuhn AB, Mauer J, Schilbach L, Hess ME, et al. An obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. J Neurosci. 2015;35(36):12584–92. https://doi.org/10.1523/JNEUROSCI.1589-15.2015.

    Article  CAS  PubMed  Google Scholar 

  84. Stice E, Yokum S, Bohon C, Marti N, Smolen A. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. NeuroImage. 2010;50(4):1618–25. https://doi.org/10.1016/j.neuroimage.2010.01.081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stice E, Burger KS, Yokum S. Reward region responsivity predicts future weight gain and moderating effects of the TaqIA allele. J Neurosci. 2015;35(28):10316–24. https://doi.org/10.1523/JNEUROSCI.3607-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun X, Luquet S, Small DM. DRD2: bridging the genome and Ingestive behavior. Trends Cogn Sci. 2017;21(5):372–84. https://doi.org/10.1016/j.tics.2017.03.004.

    Article  PubMed  Google Scholar 

  87. Kroemer NB, Small DM. Fuel not fun: reinterpreting attenuated brain responses to reward in obesity. Physiol Behav. 2016;162:37–45. https://doi.org/10.1016/j.physbeh.2016.04.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Felsted JA, Ren X, Chouinard-Decorte F, Small DM. Genetically determined differences in brain response to a primary food reward. J Neurosci. 2010;30(7):2428–32. https://doi.org/10.1523/JNEUROSCI.5483-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stice E, Yokum S, Blum K, Bohon C. Weight gain is associated with reduced striatal response to palatable food. J Neurosci. 2010;30(39):13105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Heni M, Kullmann S, Ahlqvist E, Wagner R, Machicao F, Staiger H, et al. Interaction between the obesity-risk gene FTO and the dopamine D2 receptor gene ANKK1/TaqIA on insulin sensitivity. Diabetologia. 2016;59(12):2622–31. https://doi.org/10.1007/s00125-016-4095-0.

    Article  CAS  PubMed  Google Scholar 

  91. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373(10):895–907. https://doi.org/10.1056/NEJMoa1502214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Karra E, O'Daly OG, Choudhury AI, Yousseif A, Millership S, Neary MT, et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J Clin Invest. 2013;123(8):3539–51. https://doi.org/10.1172/JCI44403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McGue M, Osler M, Christensen K. Causal inference and observational research: the utility of twins. Persp. Psychol Sci. 2010;5(5):546–56.

    Google Scholar 

  94. • Doornweerd S, van Duinkerken E, de Geus EJ, Arbab-Zadeh P, Veltman DJ, IJzerman RG. Overweight is associated with lower resting state functional connectivity in females after eliminating genetic effects: a twin study. Hum Brain Mapp. 2017;38(10):5069–81. https://doi.org/10.1002/hbm.23715. Suggests that functional connectivity is altered in obesity, independent of genetics.

    Article  PubMed  Google Scholar 

  95. Robinson S, Basso G, Soldati N, Sailer U, Jovicich J, Bruzzone L, et al. A resting state network in the motor control circuit of the basal ganglia. BMC Neurosci. 2009;10:137. https://doi.org/10.1186/1471-2202-10-137.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Schur EA, Kleinhans NM, Goldberg J, Buchwald DS, Polivy J, Del Parigi A, et al. Acquired differences in brain responses among monozygotic twins discordant for restrained eating. Physiol Behav. 2012;105(2):560–7. https://doi.org/10.1016/j.physbeh.2011.09.008.

    Article  CAS  PubMed  Google Scholar 

  97. Stratigopoulos G, Martin Carli JF, O'Day DR, Wang L, Leduc CA, Lanzano P, et al. Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab. 2014;19(5):767–79. https://doi.org/10.1016/j.cmet.2014.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. • Stratigopoulos G, Burnett LC, Rausch R, Gill R, Penn DB, Skowronski AA, et al. Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J Clin Invest. 2016;126(5):1897–910. https://doi.org/10.1172/JCI85526. Provides a potential molecular mechanism linking polymorphisms in FTO to hyperphagia and weight gain via impaired neuronal leptin signaling.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants R01DK089036 and R01DK098466.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Schur.

Ethics declarations

Conflict of Interest

Ellen Schur and Susan Carnell declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schur, E., Carnell, S. What Twin Studies Tell Us About Brain Responses to Food Cues. Curr Obes Rep 6, 371–379 (2017). https://doi.org/10.1007/s13679-017-0282-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-017-0282-7

Keywords

Navigation