Skip to main content
Log in

New oligomeric containing aliphatic moiety phthalonitrile resins: their mechanical and thermal properties in presence of silane surface-modified zirconia nanoparticles

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

This study deals with the influences of both the length of the aliphatic spacer within the phthalonitrile monomers backbones, and the amount of the silane surface modified zirconia nanoparticles on the mechanical and thermal properties of the so-called second generation phthalonitrile resins. Investigation on the curing behavior under differential scanning calorimeter outlined an important gain in the processability as the aliphatic spacer became longer. Results from the mechanical tests revealed that changing the length of the aliphatic spacer affects the mechanical properties in different ways. For instance, as the aliphatic spacer became longer, the toughness state was enhanced. At the same time, the tensile modulus and stress as well as the microhardness values were slightly reduced. It was also noticed that the introduction of the reinforcing phase caused an increase in all the tested mechanical properties. Furthermore, results from the thermogravimetric analysis and dynamic mechanical analysis revealed that reducing the length of the aliphatic spacer and adding nanofillers caused an increase in the thermal stability, storage modulus, and glass transition temperature. Moreover, a morphological study has been conducted under scanning electron microscope and transmission electron microscope to put in light the mechanisms of enhancements. Finally, this study demonstrated that the excellent properties of the phthalonitrile resins can be tailored by two ways either by monomers design or by inorganic nanoparticles reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Keller TM (1987) Phthalonitrile-based conductive polymer. J Polym Sci, Part A: Polym Chem 25:2569–2576

    Article  CAS  Google Scholar 

  2. Sastri SB, Keller TM (1998) Phthalonitrile polymers: cure behavior and properties. J Polym Sci, Part A: Polym Chem 37:2105–2111

    Article  Google Scholar 

  3. Dominguez DD, Keller TM (2007) Properties of phthalonitrile monomer blends and thermosetting phthalonitrile copolymers. Polymer 48:91–97

    Article  CAS  Google Scholar 

  4. Sastri SB, Armistead JP, Keller TM (1997) Phthalonitrile-glass fabric composites. Polym Compos 18:48–54

    Article  CAS  Google Scholar 

  5. Sastri SB, Armistead JP, Keller TM (1996) Phthalonitrile-carbon fiber composites. Polym Compos 17:816–822

    Article  CAS  Google Scholar 

  6. Chen Z, Guo H, Tang H, Yang X, Xu M, Liu X (2013) Preparation and properties of bisphenol A-based bis-phthalonitrile composite laminates. J Appl Polym Sci 129:2621–2628

    Article  CAS  Google Scholar 

  7. Tong L, Pu Z, Chen Z, Huang X, Liu X (2014) Effect of nanosilica on the thermal, mechanical, and dielectric properties of polyarylene ether nitriles terminated with phthalonitrile. Polym Compos 35:344–350

    Article  CAS  Google Scholar 

  8. Luo Y, Xu M, Pan H, Jia K, Liu X (2016) Effect of ortho-diallyl bisphenol A on the processability of phthalonitrile-based resin and their fiber-reinforced laminates. Polym Eng Sci 56:150–157

    Article  CAS  Google Scholar 

  9. Laskoski M, Dominguez DD, Keller TM (2005) Processable phthalonitrile resins with high-thermal and oxidative stability. ACS Sym Ser 922:378–388

    Article  Google Scholar 

  10. Laskoski M, Dominguez DD, Keller TM (2005) Synthesis and properties of a bisphenol A based phthalonitrile resin. J Polym Sci, Part A: Polym Chem 43:4136–4143

    Article  CAS  Google Scholar 

  11. Laskoski M, Clarke JS, Neal A, Ricks-Laskoski HL, Hervey WJ, Keller TM (2016) Synthesis of bisphenol A-free oligomeric phthalonitrile resins with sulfone and sulfone-ketone containing backbones. J Polym Sci, Part A: Polym Chem 54:1639–1646

    Article  CAS  Google Scholar 

  12. Laskoski M, Neal A, Schear MB, Keller TM, Ricks-Laskoski HL, Saab AP (2015) Oligomeric aliphatic-aromatic ether containing phthalonitrile resins. J Polym Sci, Part A: Polym Chem 53:2186–2191

    Article  CAS  Google Scholar 

  13. Ochi M, Nii D, Harada M (2011) Preparation of epoxy/zirconia hybrid materials via in situ polymerization using zirconium alkoxide coordinated with acid anhydride. Mater Chem Phys 129:424–432

    Article  CAS  Google Scholar 

  14. Mirabedini SM, Behzadnasab M, Kabiri K (2012) Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating. Compos Part A: Appl Sci Manufact 43:2095–2106

    Article  CAS  Google Scholar 

  15. Cao GP (2007) Synthesis and characterization of a novel bisphthalonitrile containing benzoxazine. Exp Polym Lett 1:512–518

    Article  CAS  Google Scholar 

  16. Lu K, Zhou S, Wun L, Gu G (2008) Dispersion and functionalization of nonaqueous synthesized zirconia nanocrystals via attachment of silane coupling agents. Langmuir 24:11497–11505

    Article  Google Scholar 

  17. Yang XL, Liu XB (2010) Study on curing reaction of 4-aminophenoxy phthalonitrile/bisphthalonitrile. Chin Chem Lett 21:743–747

    Article  CAS  Google Scholar 

  18. Sheng H, Peng X, Guo H, Yu X, Naito K, Qu X, Zhang Q (2014) Synthesis of high performance bisphthalonitrile resins cured with self-catalyzed 4-aminophenoxy phthalonitrile. Thermochim Acta 577:17–24

    Article  CAS  Google Scholar 

  19. Sheng L, Yin C, Xiao J (2016) A novel phthalonitrile monomer with low post cure temperature and short cure time. RSC Adv 6:22204–22212

    Article  CAS  Google Scholar 

  20. Derradji M, Ramdani N, Zhang T, Wang J, Feng TT, Wang H, Liu WB (2015) Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles. Mater Des 71:48–55

    Article  CAS  Google Scholar 

  21. Derradji M, Ramdani N, Zhang T, Wang J, Lin Z-W, Yang M, Xu X-D, Liu WB (2015) High thermal and thermomechanical properties obtained by reinforcing a bisphenol-A based phthalonitrile resin with silicon nitride nanoparticles. Mater Lett 149:81–84

    Article  CAS  Google Scholar 

  22. Ramdani N, Wang J, Wang H, Tt Feng, Derradji M, Liu WB (2014) Mechanical and thermal properties of silicon nitride reinforced polybenzoxazine nanocomposites. Compos Sci Technol 105:73–79

    Article  CAS  Google Scholar 

  23. Dueramae I, Jubsilp C, Takeichi T, Rimdusit S (2014) High thermal and mechanical properties enhancement obtained in highly filled polybenzoxazine nanocomposites with fumed silica. Compos Part B: Eng 56:197–206

    Article  CAS  Google Scholar 

  24. Derradji M, Ramdani N, Zhang T, Wang J, Gong L-D, Xu X, Lin Z-W, Henniche A, Rahoma HKS, Liu WB (2015) Thermal and mechanical properties enhancements obtained by reinforcing a bisphenol-A based phthalonitrile resin with silane surface-modified alumina nanoparticles. Polym Compos. doi:10.1002/pc.23722

    Google Scholar 

  25. Derradji M, Ramdani N, Zhang T, Wang J, Gong L-D, Xu X, Lin Z-W, Henniche A, Rahoma HKS, Liu WB (2015) Effect of silane surface modified titania nanoparticles on the thermal, mechanical, and corrosion protective properties of a bisphenol-A based phthalonitrile resin. Prog Org Coat 90:34–43

    Article  Google Scholar 

  26. Medina R, Haupert F, Schlarb AK (2008) Improvement of tensile properties and toughness of an epoxy resin by nanozirconium-dioxide reinforcement. J Mater Sci 43:3245–3252

    Article  CAS  Google Scholar 

  27. Kajohnchaiyagual J, Jubsilp C, Dueramae I, Rimdusit S (2014) Thermal and mechanical properties enhancement obtained in highly filled alumina-polybenzoxazine composites. Polym Compos 35:2269–2279

    Article  CAS  Google Scholar 

  28. Zhang T, Wang J, Feng T, Wang H, Ramdani N, Derradji M, Xu X, W-b Liu, Tang T (2015) A novel high performance oxazine derivative: design of tetrafunctional monomer, step-wise ring-opening polymerization, improved thermal property and broadened processing window. RSC Adv 5:33623–33631

    Article  CAS  Google Scholar 

  29. Derradji M, Ramdani N, Gong L-D, Wang J, Xu X, Lin Z-W, Henniche A, Liu W-B (2015) Mechanical, thermal, and UV-shielding behavior of silane surface modified ZnO-reinforced phthalonitrile nanocomposites. Polym Adv Technol. doi:10.1002/pat.3744

    Google Scholar 

Download references

Acknowledgments

The authors greatly appreciated the financial supports from the National Natural Science Foundation of China (Project No. 50973022), Specialized Research Funds for the Doctoral Program of Higher Education (Project No. 20122304110019), Fundamental Research Funds for the Central Universities (Project No. HEUCFT1009) and the open fund of Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, Harbin Engineering University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Wen-bin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derradji, M., Feng, T., Wang, H. et al. New oligomeric containing aliphatic moiety phthalonitrile resins: their mechanical and thermal properties in presence of silane surface-modified zirconia nanoparticles. Iran Polym J 25, 503–514 (2016). https://doi.org/10.1007/s13726-016-0442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-016-0442-8

Keywords

Navigation