Skip to main content
Log in

A chiral (1R,2R)-N,N′-bis-(salicylidene)-1,2-diphenyl-1,2-ethanediamine Schiff base dye: synthesis, crystal structure, Hirshfeld surface analysis, computational study, photophysical properties and in silico antifungal activity

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

We report synthesis, structural and computational studies, and photophysical properties of a chiral (1R,2R)-N,N′-bis-(salicylidene)-1,2-diphenyl-1,2-ethanediamine Schiff base dye (1). The structure of 1 was found to be in the enol-imine tautomer, stabilized by two intramolecular O–H···N hydrogen bonds. Molecules are packed into a 1D supramolecular chain through intermolecular C–H···O interactions. 1D chains are interlinked through intermolecular C–H···π intercations. As a result of intermolecular interactions, molecules of 1 are packed into a 3D supramolecular framework, yielding a pcu alpha-Po primitive cubic; 6/4/c1; sqc1 topology defined by the point symbol of (412·63). Favoured intermolecular H···H, H···C and H···O contacts are responsible for the overall crystal packing of the dye. Energy frameworks have been calculated to additionally analyse the overall crystal packing of 1. The absorption spectra of 1 in THF, CH2Cl2 and CH3CN each exhibit three intense bands in the UV region. The absorption spectra of 1 in EtOH, nPrOH, iPrOH and nBuOH, besides the same three intense bands in the UV region, contain an additional band in the visible region centred at about 410 nm, corresponding to the cis-keto-enamine tautomer. The absorption spectrum of 1 in MeOH contains an additional intense shoulder at about 350 nm. The emission spectrum of 1 in MeOH contains a broad band at 438 nm, arising from the emission of the enol-imine* form. Theoretical calculations based on density functional theory (DFT) were performed to verify the structure of 1 as well as its electronic and optical properties. The global chemical reactivity descriptors were estimated from the energy of the HOMO and LUMO orbitals. Molecular docking studies were performed to evaluate the antifungal activity of 1 against cytochrome P450 14 alpha-sterol demethylase (CYP51).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. H. Schiff, Eur. J. Org. Chem. 131, 118–119 (1864)

    Google Scholar 

  2. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A.D. McNaught, A. Wilkinson. Blackwell Scientific Publications, Oxford (1997)

  3. https://goldbook.iupac.org/terms/view/A00357

  4. S. Yamada, Coord. Chem. Rev. 190–192, 537–555 (1999)

    Article  Google Scholar 

  5. P.G. Cozzi, Chem. Soc. Rev. 33, 410–421 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. C. Baleizão, H. Garcia, Chem. Rev. 106, 3987–4043 (2006)

    Article  PubMed  CAS  Google Scholar 

  7. A. Decortes, A.M. Castilla, A.W. Kleij, Angew. Chem. Int. Ed. 49, 9822–9837 (2010)

    Article  CAS  Google Scholar 

  8. S. Shaw, J.D. White, Chem. Rev. 119, 9381–9426 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. W. Zhang, J.L. Loebach, S.R. Wilson, E.N. Jacobsen, J. Am. Chem. Soc. 112, 2801–2803 (1990)

    Article  CAS  Google Scholar 

  10. E.N. Jacobsen, W. Zhang, A.R. Muci, J.R. Ecker, L. Deng, J. Am. Chem. Soc. 113, 7063–7064 (1991)

    Article  CAS  Google Scholar 

  11. W. Dabelstein, A. Reglitzky, A. Schütze, K. Reders, A. Brunner, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2016).

    Google Scholar 

  12. H.C. Aspinall, Chem. Rev. 102, 1807–1850 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. J. Crassous, Chem. Soc. Rev. 38, 830–845 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. M. Liu, L. Zhang, T. Wang, Chem. Rev. 115, 7304–7397 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. E. Hadjoudis, M. Vitterakis, I. Moustakali, I. Mavridis, Tetrahedron 43, 1345–1360 (1987)

    Article  CAS  Google Scholar 

  16. E. Hadjoudis, I.M. Mavridis, Chem. Soc. Rev. 33, 579–588 (2004)

    CAS  PubMed  Google Scholar 

  17. K. Amimoto, T. Kawato, J. Photochem. Photobiol. C 6, 207–226 (2005)

    Article  CAS  Google Scholar 

  18. T. Haneda, M. Kawano, T. Kojima, M. Fujita, Angew. Chem. Int. Ed. 46, 6643–6645 (2007)

    Article  CAS  Google Scholar 

  19. A. Filarowski, A. Koll, L. Sobczyk, Curr. Org. Chem. 13, 172–193 (2009)

    Article  CAS  Google Scholar 

  20. V. Bertolasi, P. Gilli, G. Gilli, Curr. Org. Chem. 13, 250–268 (2009)

    Article  CAS  Google Scholar 

  21. E. Hadjoudis, S.D. Chatziefthimiou, I.M. Mavridis, Curr. Org. Chem. 13, 269–286 (2009)

    Article  CAS  Google Scholar 

  22. V.I. Minkin, A.V. Tsukanov, A.D. Dubonosov, V.A. Bren, J. Mol. Struct. 998, 179–191 (2011)

    Article  CAS  Google Scholar 

  23. Y. Inokuma, M. Kawano, M. Fujita, Nat. Chem. 3, 349–358 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. K.T. Mahmudov, A.J.L. Pombeiro, Chem. Eur. J. 22, 16356–16398 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. D.A. Safin, K. Robeyns, Y. Garcia, CrystEngComm 14, 5523–5529 (2012)

    Article  CAS  Google Scholar 

  26. D.A. Safin, K. Robeyns, Y. Garcia, RSC Adv. 2, 11379–11388 (2012)

    Article  CAS  Google Scholar 

  27. D.A. Safin, Y. Garcia, RSC Adv. 14, 6466–6471 (2013)

    Article  CAS  Google Scholar 

  28. D.A. Safin, M. Bolte, Y. Garcia, CrystEngComm 16, 5524–5526 (2014)

    Article  CAS  Google Scholar 

  29. D.A. Safin, M.G. Babashkina, K. Robeyns, M. Bolte, Y. Garcia, CrystEngComm 16, 7053–7061 (2014)

    Article  CAS  Google Scholar 

  30. D.A. Safin, M. Bolte, Y. Garcia, CrystEngComm 16, 8786–8793 (2014)

    Article  CAS  Google Scholar 

  31. D.A. Safin, M.G. Babashkina, K. Robeyns, Y. Garcia, RSC Adv. 16, 53669–53678 (2016)

    Article  Google Scholar 

  32. D.A. Safin, K. Robeyns, M.G. Babashkina, Y. Filinchuk, A. Rotaru, C. Jureschi, M.P. Mitoraj, J. Hooper, M. Brela, Y. Garcia, CrystEngComm 16, 7249–7259 (2016)

    Article  Google Scholar 

  33. D.A. Safin, K. Robeyns, Y. Garcia, CrystEngComm 18, 7284–7296 (2016)

    Article  CAS  Google Scholar 

  34. A.A. Shiryaev, T.M. Burkhanova, G. Mahmoudi, M.G. Babashkina, D.A. Safin, J. Lumin. 226, 117454 (2020)

    Article  CAS  Google Scholar 

  35. D.S. Shapenova, A.A. Shiryaev, M. Bolte, M. Kukułka, D.W. Szczepanik, J. Hooper, M.G. Babashkina, G. Mahmoudi, M.P. Mitoraj, D.A. Safin, Chem. Eur. J. 26, 12987–12995 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. R. Dennington, T.A. Keith, J.M. Millam, GaussView, Version 6.0, Semichem Inc., Shawnee Mission, KS, 2016

  37. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01 (2013)

  38. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650–654 (1980)

    Article  CAS  Google Scholar 

  39. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  40. M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80, 3265–3269 (1984)

    Article  CAS  Google Scholar 

  41. C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward, Acta Crystallogr. B 72, 171–179 (2016)

    Article  CAS  Google Scholar 

  42. T. Wu, CSD Communication (2017)

  43. T.M. Krygowski, K. Woźniak, R. Anulewicz, D. Pawlak, W. Kolodziejski, E. Grech, A. Szady, J. Phys. Chem. A 101, 9399–9404 (1997)

    Article  CAS  Google Scholar 

  44. P.M. Dominiak, E. Grech, G. Barr, S. Teat, P. Mallinson, K. Woźniak, Chem. Eur. J. 9, 963–970 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. G.M. Mercier, K. Robeyns, T. Leyssens, Cryst. Growth Des. 16, 3198–3205 (2016)

    Article  CAS  Google Scholar 

  46. R.F. Martínez, E. Matamoros, P. Cintas, J.C. Palacios, J. Org. Chem. 85, 5838–5862 (2020)

    Article  PubMed  CAS  Google Scholar 

  47. V.A. Blatov, A.P. Shevchenko, D.M. Proserpio, Cryst. Growth Des. 14, 3576–3586 (2014)

    Article  CAS  Google Scholar 

  48. M.A. Spackman, D. Jayatilaka, CrystEngComm 11, 19–32 (2009)

    Article  CAS  Google Scholar 

  49. M.A. Spackman, J.J. McKinnon, CrystEngComm 4, 378–392 (2002)

    Article  CAS  Google Scholar 

  50. M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, M.A. Spackman, CrystalExplorer17, University of Western Australia, http://hirshfeldsurface.net (2017)

  51. C. Jelsch, K. Ejsmont, L. Huder, IUCrJ 1, 119–128 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. C.F. Mackenzie, P.R. Spackman, D. Jayatilaka, M.A. Spackman, IUCrJ 4, 575–587 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. S.H. Alarcón, A.C. Olivieri, D. Sanz, R.M. Claramunt, J. Elguero, J. Mol. Struct. 705, 1–9 (2004)

    Article  CAS  Google Scholar 

  54. P.I. Nagy, W.M.F. Fabian, J. Phys. Chem. B 110, 25026–25032 (2006)

    Article  CAS  PubMed  Google Scholar 

  55. M.J. Kamlet, J.-L.M. Abboud, M.H. Abraham, R.W. Taft, J. Org. Chem. 48, 2877–2887 (1983)

    Article  CAS  Google Scholar 

  56. Y. Marcus, J. Solut. Chem. 20, 929–944 (1991)

    Article  CAS  Google Scholar 

  57. P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793–1873 (2003)

    Article  CAS  PubMed  Google Scholar 

  58. https://www.rcsb.org/structure/1EA1

  59. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, J. Comp. Chem. 16, 2785–2791 (2009)

    Article  CAS  Google Scholar 

  60. O. Trott, A.J. Olson, J. Comput. Chem. 31, 455–461 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Discovery Studio 2015: Dassault Systemes BIOVIA, Discovery Studio Modelling Environment, Release 4.5, San Diego: Dassault Systemes

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

A. A. S. involved in conducting research and partial analysis of results; A. N. G. involved in conducting research and partial analysis of results; T. M. B. involved in planning research, analysis results, and preparing a manuscript; L. E. A. involved in conducting research and partial analysis of results; M. G. B. involved in planning research, analysis results, and preparing a manuscript; R. C. involved in conducting molecular docking and analysis of results; D. A. S. involved in planning research, analysis results, and preparing a manuscript.

Corresponding author

Correspondence to Damir A. Safin.

Ethics declarations

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare that they have no conflicts of interest in this work.

Ethical approval

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryaev, A.A., Goncharenko, A.N., Burkhanova, T.M. et al. A chiral (1R,2R)-N,N′-bis-(salicylidene)-1,2-diphenyl-1,2-ethanediamine Schiff base dye: synthesis, crystal structure, Hirshfeld surface analysis, computational study, photophysical properties and in silico antifungal activity. J IRAN CHEM SOC 18, 2897–2911 (2021). https://doi.org/10.1007/s13738-021-02237-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02237-5

Keywords

Navigation