Skip to main content

Advertisement

Log in

Automated epilepsy detection techniques from electroencephalogram signals: a review study

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Epilepsy is a serious neurological condition which contemplates as top 5 reasons for avoidable mortality from ages 5–29 in the worldwide. The avoidable deaths due to epilepsy can be reduced by developing efficient automated epilepsy detection or prediction machines or software. To develop an automated epilepsy detection framework, it is essential to properly understand the existing techniques and their benefit as well as detriment also. This paper aims to provide insight on the information about the existing epilepsy detection and classification techniques as they are crucial for supporting clinical-decision in the course of epilepsy treatment. This review study accentuate on the existing epilepsy detection approaches and their drawbacks. This information presented in this article will be helpful to the neuroscientist, researchers as well as to technicians for assisting them in selecting the reliable and appropriate techniques for analyzing epilepsy and developing an automated software system of epilepsy identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. "Provider of Specialist Epilepsy Services | Epilepsy Action Australia", Provider of Specialist Epilepsy Services | Epilepsy Action Australia, 2018. [Online]. Available: https://www.epilepsy.org.au/about-epilepsy/facts-and-statistics/. Accessed 21 Dec 2018.

  2. Kabir E, Siuly, Cao J, Wang H. A computer aided analysis scheme for detecting epileptic seizure from EEG data. Int J Comput Intell Syst. 2018;11:663.

    Google Scholar 

  3. Zarei R, He J, Siuly, Zhang Y. Exploring Douglas Peucker algorithm in the detection of epileptic seizure from multiclass EEG signals. BioMed Res Int. 2019;2019:9.

    Google Scholar 

  4. Siuly, Li Y, Zhang Y. EEG signal analysis and classification: techniques and applications. Health information science, Springer Nature, US (ISBN 978-3-319-47653-7). 2016.

  5. Wiebe S, Hesdorffer D. Epilepsy: being ill in more ways than one. Epilepsy Curr. 2007;7:145–8.

    Google Scholar 

  6. Hauser W, Annegers J, Rocca W. Descriptive epidemiology of epilepsy: contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc. 1996;71:576–86.

    Google Scholar 

  7. Jones L, Thomas R. Sudden death in epilepsy: insights from the last 25 years. Seizure. 2017;44:232–6.

    Google Scholar 

  8. Siuly S, Alcin O, Bajaj V, Sengur A, Zhang Y. Exploring Hermite transformation in brain signal analysis for the detection of epileptic seizure. IET Sci Meas Technol. 2019;13:35–41.

    Google Scholar 

  9. Supriya S, Siuly S, Wang H, Zhang Y. Weighted complex network-based framework for epilepsy detection from EEG signals, modelling and analysis of active biopotential signals in healthcare, volume 1, Chapter 3, pages 3–1 to 3–22, August 2020 (Online ISBN: 978-0-7503-3279-8 and Print ISBN: 978-0-7503-3277-4); 2020.

  10. Siuly, Li Y, Wen P. Clustering technique-based least square support vector machine for EEG signal classification. Comput Methods Programs Biomed. 2011;104(3):358–72.

    Google Scholar 

  11. Siuly, Li Y, Wen P. Analysis and classification of EEG signals using a hybrid clustering technique. In: Proceedings of the 2010 IEEE/ICME International Conference on Complex Medical Engineering (CME2010); 2010. p. 34–39.

  12. Supriya S, Siuly S, Wang H, Zhang Y. EEG sleep stages analysis and classification based on weighed complex network features. IEEE Trans Emerg Top Comput Intell. 2018. https://doi.org/10.1109/TETCI.2018.2876529.

    Article  Google Scholar 

  13. Siuly S, Alçin OF, Bajaj V, Şengür A, Zhang Y. Exploring Hermite transformation in brain signal analysis for the detection of epileptic seizure. IET Sci Meas Technol. 2018. https://doi.org/10.1049/iet-smt.2018.5358.

    Article  Google Scholar 

  14. Siuly S, Kabir E, Wang H, Zhang Y. Exploring sampling in the detection of multicategory EEG signals. Comput Math Methods Med. 2015;1–12:2015.

    Google Scholar 

  15. Gotman J, Gloor P. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalogr Clin Neurophysiol. 1976;41:513–29.

    Google Scholar 

  16. Gotman J, Ives J, Gloor P. Automatic recognition of inter-ictal epileptic activity in prolonged EEG recordings. Electroencephalogr Clin Neurophysiol. 1979;46:510–20.

    Google Scholar 

  17. Ma J, Sun L, Wang H, Zhang Y, Aickelin U. Supervised anomaly detection in uncertain pseudoperiodic data streams. ACM Trans Internet Technol. 2016;16:1–20.

    Google Scholar 

  18. Hu H, Li J, Wang H, Daggard G. Combined gene selection methods for microarray data analysis. Lecture notes in computer science knowledge-based intelligent information and engineering systems; 2006. p. 976–983.

  19. Peng M, Zeng G, Sun Z, Huang J, Wang H, Tian G. Personalized app recommendation based on app permissions. World Wide Web. 2017;21:89–104.

    Google Scholar 

  20. Yin J, Cao J, Siuly S, Wang H. An integrated spectral-temporal analysis based framework for MCI detection using resting-state EEG signals. Int J Autom Comput. 2019;16(3):1–14.

    Google Scholar 

  21. Khalil F, Li J, Wang H. An integrated model for next page access prediction. Int J Knowl Web Intell. 2009;1:48.

    Google Scholar 

  22. Zhang J, Tao X, Wang H. Outlier detection from large distributed databases. World Wide Web. 2013;17:539–68.

    Google Scholar 

  23. Khalil F, Li J, Wang H. markov model with clustering for predicting web page accesses. In: Proceeding of the 13th Australasian World Wide Web Conference (AusWeb07); 2007. p. 63–74.

  24. Li H, Wang Y, Wang H, Zhou B. Multi-window based ensemble learning for classification of imbalanced streaming data. World Wide Web. 2017;20:1507–25.

    Google Scholar 

  25. Huang J, Peng M, Wang H, Cao J, Gao W, Zhang X. A probabilistic method for emerging topic tracking in Microblog stream. World Wide Web. 2016;20:325–50.

    Google Scholar 

  26. Siuly, Bajaj V, Sengur A, Zhang Y. An advanced analysis system for identifying alcoholic brain state through EEG signals. Int J Autom Comput. 2019;16(6):737–47.

    Google Scholar 

  27. Pradhan N, Dutt D. Data compression by linear prediction for storage and transmission of EEG signals. Int J Biomed Comput. 1994;35:207–17.

    Google Scholar 

  28. Ghosh-Dastidar S, Adeli H, Dadmehr N. Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans Biomed Eng. 2008;55:512–8.

    Google Scholar 

  29. Sheoran P, Saini J. Epileptic seizure detection using PCA on wavelet subbands. In: 2014 5th International Conference—Confluence The Next Generation Information Technology Summit (Confluence). 2014.

  30. Scholz M. Principal component analysis. 2006. https://www.nlpca.org/pca_principal_component_analysis.html.

  31. Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000;13:411–30.

    Google Scholar 

  32. Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust. 1967;15:70–3.

    Google Scholar 

  33. Yucelbas C, Ozsen S, Gunes S, Yosunkaya S. Effect of some power spectral density estimation methods on automatic sleep stage scoring using artificial neural networks. IADIS Int J Comput Sci Inform Syst. 2013;8(2):119–31.

    Google Scholar 

  34. Übeylı ED, Güler I. Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods. Comput Biol Med. 2004;34:293–306.

    MATH  Google Scholar 

  35. https://www.cs.colostate.edu/eeg/talks/spr98/6.html.

  36. Unser M, Aldroubi A. A review of wavelets in biomedical applications. Proc IEEE. 1996;84:626–38.

    Google Scholar 

  37. Application Areas, https://www.wolfram.com/mathematica/new-in-8/wavelet-analysis/lifting-wavelet-transform-(lwt).html.

  38. Oweis RJ, Abdulhay EW. Seizure classification in EEG signals utilizing Hilbert-Huang transform. BioMed Eng OnLine. 2011;10:38.

    Google Scholar 

  39. Lee A, Altenmüller E. Detecting position dependent tremor with the Empirical mode decomposition. J Clin Mov Disord. 2015;2:1–6.

    Google Scholar 

  40. Müller W, Jung A, Ahammer H. Advantages and problems of nonlinear methods applied to analyze physiological time signals: human balance control as an example. Sci Rep. 2017;7:2464.

    Google Scholar 

  41. Acharya UR, Sree SV, Suri JS. Automatic detection of epileptic EEG signals using higher order cumulant features. Int J Neural Syst. 2011;21:403–14.

    Google Scholar 

  42. Fragkeskou M, Paparoditis E. Inference for the fourth-order innovation cumulant in linear time series. J Time Ser Anal. 2015;37:240–66.

    MathSciNet  MATH  Google Scholar 

  43. Eckmann J-P, Kamphorst SO, Ruelle D. Recurrence plots of dynamical systems. Europhys Lett (EPL). 1987;4:973–7.

    Google Scholar 

  44. Marino AA, Nilsen E, Chesson AL, Frilot C. Effect of low-frequency magnetic fields on brain electrical activity in human subjects. Clin Neurophysiol. 2004;115:1195–201.

    Google Scholar 

  45. Akbarian B, Erfanian A. Automatic seizure detection based on nonlinear dynamical analysis of EEG signals and mutual information. Basic Clin Neurosci J. 2018;9:227–40.

    Google Scholar 

  46. Bhui P, Senroy N. Application of recurrence quantification analysis to power system dynamic studies. IEEE Trans Power Syst. 2016;31:581–91.

    Google Scholar 

  47. Carrubba S, Minagar A, Chesson AL, Frilot C, Marino AA. Increased determinism in brain electrical activity occurs in association with multiple sclerosis. Neurol Res. 2012;34:286–90.

    Google Scholar 

  48. Pincus S. Approximate entropy: a complexity measure for biological time series data. In: Proceedings of the 1991 IEEE Seventeenth Annual Northeast Bioengineering Conference. 1991.

  49. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278:H2039–H20492049.

    Google Scholar 

  50. Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of biological signals. Phys Rev E. 2005;71:021906.

    MathSciNet  Google Scholar 

  51. Uthayakumar R. Fractal dimension in epileptic EEG signal analysis. Understanding complex systems applications of chaos and nonlinear dynamics in science and engineering, vol. 3. Berlin: Springer; 2013. p. 103–157.

    Google Scholar 

  52. Li X, Polygiannakis J, Kapiris P, Peratzakis A, Eftaxias K, Yao X. Fractal spectral analysis of pre-epileptic seizures in terms of criticality. J Neural Eng. 2005;2:11–6.

    Google Scholar 

  53. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. The theory of chaotic attractors. New York: Springer; 2004. p. 170–189.

    Google Scholar 

  54. Caesarendra W, Kosasih B, Tieu K, Moodie CAS. An application of nonlinear feature extraction—a case study for low speed slewing bearing condition monitoring and prognosis. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2013.

  55. Adeli H, Zhou Z, Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods. 2003;123:69–87.

    Google Scholar 

  56. Rosenstein MT, Collins JJ, Luca CJD. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D. 1993;65:117–34.

    MathSciNet  MATH  Google Scholar 

  57. Prior PF, Virden RSM, Maynard DE. An EEG device for monitoring seizure discharges. Epilepsia. 1973;14:367–72.

    Google Scholar 

  58. Babb TL, Mariani E, Crandall PH. An electronic circuit for detection of EEG seizures recorded with implanted electrodes. Electroencephalogr Clin Neurophysiol. 1974;37:305–8.

    Google Scholar 

  59. Gotman J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol. 1982;54:530–40.

    Google Scholar 

  60. Gotman J. Automatic seizure detection: improvements and evaluation. Electroencephalogr Clin Neurophysiol. 1990;76:317–24.

    Google Scholar 

  61. Qu H, Gotman J. Improvement in seizure detection performance by automatic adaptation to the EEG of each patient. Electroencephalogr Clin Neurophysiol. 1993;86:79–877.

    Google Scholar 

  62. Qu H. Self-adapting Algorithms for Seizure Detection during EEG Monitoring. PhD dissertation, McGill University, 1995.

  63. Qu H, Gotman J. A seizure warning system for long-term epilepsy monitoring. Neurology. 1995;45:2250–4.

    Google Scholar 

  64. Qu H, Gotman J. A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: possible use as a warning device. IEEE Trans Biomed Eng. 1997;44:115–22.

    Google Scholar 

  65. Jahankhani P, Kodogiannis V, Revett K. EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA06). 2006.

  66. Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl. 2009;36:2027–36.

    Google Scholar 

  67. Kannathal N, Choo ML, Acharya UR, Sadasivan P. Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed. 2005;80:187–94.

    Google Scholar 

  68. Polat K, Güneş S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput. 2007;187:1017–26.

    MathSciNet  MATH  Google Scholar 

  69. Polat K, Güneş S. Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals. Expert Syst Appl. 2008;34:2039–48.

    Google Scholar 

  70. Kabir E, Siuly, Zhang Y. Epileptic seizure detection from EEG signals using logistic model trees. Brain Inform. 2016;3:93–100.

    Google Scholar 

  71. Siuly S, Li Y. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification. Comput Methods Programs Biomed. 2015;119:29–422.

    Google Scholar 

  72. Alçin ÖF, Siuly S, Bajaj V, Guo Y, Şengur A, Zhang Y. Multi-category EEG signal classification developing time-frequency texture features based Fisher Vector encoding method. Neurocomputing. 2016;218:251–8.

    Google Scholar 

  73. Siuly, Li Y. A novel statistical algorithm for multiclass EEG signal classification. Eng Appl Artif Intell. 2014;34:154–67.

    Google Scholar 

  74. Siuly, Li Y, Wen P. Clustering technique-based least square support vector machine for EEG signal classification. Comput Methods Programs Biomed. 2011;104:358–72.

    Google Scholar 

  75. Siuly S, Li Y, Zhang Y. A statistical framework for classifying epileptic seizure from multi-category EEG signals. Health information science EEG signal analysis and classification. New York: Springer; 2016. p. 99–125.

    Google Scholar 

  76. Chua K, Chandran V, Acharya U, Lim C. Application of higher order spectra to identify epileptic EEG. J Med Syst. 2010;35:1563–71.

    Google Scholar 

  77. Kumar SP, Sriraam N, Benakop PG, Jinaga BC. Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Syst Appl. 2010;37:3284–91.

    Google Scholar 

  78. Kannathal N, Acharya UR, Lim CM, Weiming Q, Hidayat M, Sadasivan PK. Characterization of EEG: a comparative study. Comput Methods Programs Biomed. 2005;80(1):17–23.

    Google Scholar 

  79. Srinivasan V, Eswaran C, Sriraam N. Artificial neural network-based epileptic detection using time-domain and frequency-domain features. J Med Syst. 2005;29(6):647–60.

    Google Scholar 

  80. Belhadj S, Attia A, Adnane AB, Ahmed-Foitih Z, Taleb AA. Whole-brain epileptic seizure detection using unsupervised classification. In: Modelling, Identification and Control (ICMIC), 2016 8th International Conference on (pp. 977–982). IEEE. 2016.

  81. Shoaib M, Lee KH, Jha NK, Verma N. A 0.6–107 µW energy-scalable processor for directly analyzing compressively-sensed EEG. IEEE Trans Circ Syst I. 2014;61(4):1105–18.

    Google Scholar 

  82. Aslan K, Bozdemir H, Şahin C, Oğulata SN, Erol R. A radial basis function neural network model for classification of epilepsy using EEG signals. J Med Syst. 2008;32(5):403–8.

    Google Scholar 

  83. Guler NF, Ubey ED, Guler I. Recurrent neural network employing Lyapunov exponents for EEG signals classification. Expert Syst Appl. 2005;29(3):506–14.

    Google Scholar 

  84. Sheykhivand S, Rezaii T, Mousavi Z, Delpak A, Farzamnia A. Automatic identification of epileptic seizures from EEG signals using sparse representation-based classification. IEEE Access. 2020;8:138834–455.

    Google Scholar 

  85. Fasil O, Rajesh R. Time-domain exponential energy for epileptic EEG signal classification. Neurosci Lett. 2019;694:1–8.

    Google Scholar 

  86. Lahmiri S, Shmuel A. Accurate classification of seizure and seizure-free intervals of intracranial EEG signals from epileptic patients. IEEE Trans Instrum Meas. 2019;68:791–6.

    Google Scholar 

  87. Hassan A, Subasi A, Zhang Y. Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise. Knowl-Based Syst. 2020;191:105333.

    Google Scholar 

  88. Zarei R, He J, Siuly S, Huang G, Zhang Y. Exploring Douglas-Peucker algorithm in the detection of epileptic seizure from multicategory EEG signals. Biomed Res Int. 2019;2019:1–19.

    Google Scholar 

  89. Al Ghayab H, Li Y, Siuly S, Abdulla S. A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification. J Neurosci Methods. 2019;312:43–52.

    Google Scholar 

  90. Al Ghayab H, Li Y, Siuly S, Abdulla S. Epileptic seizures detection in EEGs blending frequency domain with information gain technique. Soft Comput. 2018;23:227–39.

    Google Scholar 

  91. Mahjoub C, Le Bouquin Jeannès R, Lajnef T, Kachouri A. Epileptic seizure detection on EEG signals using machine learning techniques and advanced preprocessing methods. Biomed Eng. 2020;65:33–50.

    Google Scholar 

  92. Wang X, Gong G, Li N, Qiu S. Detection analysis of epileptic EEG using a novel random forest model combined with grid search optimization. Front Hum Neurosci. 2019;13:52.

    Google Scholar 

  93. Garcés Correa A, Orosco L, Diez P, Laciar Leber E. Adaptive filtering for epileptic event detection in the EEG. J Med Biol Eng. 2019;39:912–8.

    Google Scholar 

  94. Aung S, Wongsawat Y. Modified-distribution entropy as the features for the detection of epileptic seizures. Front Physiol. 2020;11:607.

    Google Scholar 

  95. Chen S, Zhang X, Chen L, Yang Z. Automatic diagnosis of epileptic seizure in electroencephalography signals using nonlinear dynamics features. IEEE Access. 2019;7:61046–56.

    Google Scholar 

  96. Selvakumari R, Mahalakshmi M, Prashalee P. Patient-specific seizure detection method using hybrid classifier with optimized electrodes. J Med Syst. 2019;43:121.

    Google Scholar 

  97. Wu J, Zhou T, Li T. Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting. Entropy. 2020;22:140.

    Google Scholar 

  98. Jang S, Lee S. Detection of epileptic seizures using wavelet transform, peak extraction and PSR from EEG signals. Symmetry. 2020;12:1239.

    Google Scholar 

  99. Supriya S, Siuly S, Zhang Y. Automatic epilepsy detection from EEG introducing a new edge weight method in the complex network. Electron Lett. 2016;52:1430–2.

    Google Scholar 

  100. Supriya S, Siuly S, Wang H, Cao J, Zhang Y. Weighted visibility graph with complex network features in the detection of epilepsy. IEEE Access. 2016;4:6554–666.

    Google Scholar 

  101. Supriya, Siuly, Wang H, Zhuo G, Zhang Y. Analyzing EEG signal data for detection of epileptic seizure: introducing weight on visibility graph with complex network feature. Lecture notes in computer science databases theory and applications; 2016, p. 56–66

  102. Supriya, Siuly, Wang H, Zhang Y. An efficient framework for the analysis of Big Brain Signals Data. Lecture notes in computer science databases theory and applications; 2018. p. 199–207.

  103. Zhu G, Li Y, Wen P. Analysing epileptic EEGs with a visibility graph algorithm. In: 2012 5th International Conference on BioMedical Engineering and Informatics; 2012.

  104. Supriya S, Siuly S, Wang H, Zhang Y. Weighted complex network based framework for epilepsy detection from EEG signals. Modelling and analysis of active biopotential signals in healthcare, volume 1. 2020. https://doi.org/10.1088/978-0-7503-3279-8ch3.

  105. Liu M, Meng Q, Zhang Q, Wang D, Zhang H. The feature extraction method of EEG signals based on transition network. Advances in neural networks—ISNN 2017 lecture notes in computer science; 2017. p. 491–497.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siuly Siuly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supriya, S., Siuly, S., Wang, H. et al. Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf Sci Syst 8, 33 (2020). https://doi.org/10.1007/s13755-020-00129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-020-00129-1

Keywords

Navigation