Skip to main content
Log in

Metal ion remediation by polyamidoamine dendrimers: a comparison of metal ion, oxidation state, and titania immobilization

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The exceptional ability of dendrimers to coordinate metal ions yields the potential for many applications including wastewater remediation, which is the focus of this study. Here, the comparison of metal ion removal rate from simulated wastewater by generation 4 dendrimers with external hydroxyl functional groups (G4-OH) is evaluated for Ni2+, Fe2+, and Fe3+ ions. Ni2+ to amine complexation occurred more rapidly than Fe3+, which was more rapid than Fe2+ complexation. These results indicate that both charge density and d-electron configuration are important toward the chelation rate. The impact of both factors is discussed in light of existing models in which precursor aquation rates have been proposed as a key intermediate step. Additionally, the application of the dendrimers as chelation agents is further advanced by immobilizing the dendrimer to titania and re-evaluating its chelation ability for Ni2+ removal. The dendrimer immobilization decreased the pseudo-first-order rate coefficient for Ni2+—amine complexation at a pH of 7 by a factor of 7.5. This result is significant as it suggests that mass transfer becomes important following immobilization of the dendrimer to titania.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexeev OS, Siani A, Lafaye G, Williams CT, Ploehn HJ, Amiridis MD (2006) EXAFS characterization of dendrimer-Pt nanocomposites used for the preparation of Pt/ç-Al2O3 catalysts. J Phys Chem B 110:24903–24914

    CAS  Google Scholar 

  • Astruc D, Boisselier B, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959

    Article  CAS  Google Scholar 

  • Balogh L, Tomalia DA (1998) Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J Am Chem Soc 20:7355–7356

    Article  Google Scholar 

  • Barakat MA, Ramadan MH, Al-Ghamdi M, Al-Garney S, Woodcock HL, Kuhn JN (2013) Remediation of Cu(II), Ni(II), and Cr(III) ions from simulated wastewater by dendrimer/titania composites. J Environ Manag 117:50–57

    Article  CAS  Google Scholar 

  • Bronstein LM, Shifrina ZB (2011) Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chem Rev 111:5301–5344

    Article  CAS  Google Scholar 

  • Cahill BP, Papastavrou G, Koper GJM, Borkovec M (2008) Adsorption of poly(amido amine) (PAMAM) dendrimers on silica: importance of electrostatic three-body attraction. Langmuir 24:465–473

    Article  CAS  Google Scholar 

  • Castillo VA, Kuhn JN (2012) Role of the Ni:Fe ratio in ethylene hydrogenation activity for silica-supported Ni–Fe clusters prepared by dendrimer-templating. J Phys Chem C 116:8627–8633

    Article  CAS  Google Scholar 

  • Crump CJ, Gilbertson JD, Chandler BD (2008) CO oxidation and toluene hydrogenation by Pt/TiO2 catalysts prepared from dendrimer encapsulated nanoparticle precursors. Top Catal 49:233–240

    Article  CAS  Google Scholar 

  • Deutsch DS, Lafaye G, Liu D, Chandler BD, Williams CT, Amiridis MD (2004) Decomposition and activation of Pt-dendrimer nanocomposites on a silica support. Catal Lett 97(3–4):139–143

    Article  CAS  Google Scholar 

  • Deutsch DS, Siani A, Fanson PT, Hirata H, Matsumoto S, Williams CT, Amiridis MD (2007) FT-IR investigation of the thermal decomposition of poly(amidoamine) dendrimers and dendrimer-metal nanocomposites supported on Al2O3 and ZrO2. J Phys Chem C 111:4246–4255

    Article  CAS  Google Scholar 

  • Diallo MS, Balogh L, Shafagati A, Goddard WA III, Tomalia DA (1999) Poly(amidoamine) dendrimers: a new class of high capacity chelating agents for Cu(II) ions. Environ Sci Technol 33:820–824

    Article  CAS  Google Scholar 

  • Diallo MS, Christie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis C, Goddard WA III, Johnson JH Jr (2004) Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20:2640–2651

    Article  CAS  Google Scholar 

  • Diallo MS, Christie S, Swaminathan P, Johnson JH Jr, Goddard WA III (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Technol 39:1366–1377

    Article  CAS  Google Scholar 

  • Douglas BE, McDaniel DH, Alexander JJ (1983) Concepts and models of inorganic chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6:427–436

    Article  CAS  Google Scholar 

  • Gates AT, Nettleton EG, Myers VS, Crooks RM (2010) Synthesis and characterization of NiSn dendrimer-encapsulated nanoparticles. Langmuir 26:12994–12999

    Article  CAS  Google Scholar 

  • Gomez MV, Guerra J, Velders AH, Crooks RM (2008) NMR characterization of fourth-generation PAMAM dendrimers in the presence and absence of palladium dendrimer-encapsulated nanoparticles. J Am Chem Soc 131:341–350

    Article  Google Scholar 

  • Huang W, Kuhn JN, Tsung C-K, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett 8(7):2027–2034

    Article  CAS  Google Scholar 

  • Jensen H, Soloviev A, Li Z, Søgaard EG (2005) XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Appl Surf Sci 246:239–249

    CAS  Google Scholar 

  • Kitchens KM, Ghandehari H (2009) PAMAM dendrimers as nanoscale oral drug delivery systems. Nanotechnology in Drug Delivery, American Association of Pharmaceutical Scientists, New York, NY

    Google Scholar 

  • Knecht MR, Crooks RM (2007) Magnetic properties of dendrimer-encapsulated iron nanoparticles containing an average of 55 and 147 atoms. New J Chem 31:1349–1353

    Article  CAS  Google Scholar 

  • Knecht MR, Garcia-Martinez JC, Crooks RM (2006) Synthesis, characterization, and magnetic properties of dendrimer-Encapsulated nickel nanoparticles containing <150 atoms. Chem Mater 18:5039–5044

    Article  CAS  Google Scholar 

  • Knecht MR, Weir MG, Frenkel AI, Crooks RM (2008a) Structural rearrangement of bimetallic alloy PdAu nanoparticles within dendrimer templates to yield core/shell configurations. Chem Mater 20:1019–1028

    Article  CAS  Google Scholar 

  • Knecht MR, Weir MG, Myers VS, Pyrz WD, Ye H, Petkov V, Buttrey DJ, Frenkel AI, Crooks RM (2008b) Synthesis and characterization of Pt dendrimer-encapsulated nanoparticles: effect of the template on nanoparticle formation. Chem Mater 20:5218–5228

    Article  CAS  Google Scholar 

  • Kuhn JN, Huang W, Tsung C-K, Zhang Y, Somorjai GA (2008) Structure sensitivity of carbon–nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J Am Chem Soc 130:14026–14027

    Article  CAS  Google Scholar 

  • Lee CC, MacKay JA, Frechet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526

    Article  CAS  Google Scholar 

  • Lopez-De Jesus YM, Vicente A, Lafaye G, Marecot P, Williams CT (2008) Synthesis and characterization of dendrimer-derived supported iridium catalysts. J Phys Chem C 112:13837–13845

    Article  CAS  Google Scholar 

  • Mankbadi MR, Barakat MA, Ramadan MH, Woodcock HL, Kuhn JN (2011) Iron chelation by polyamidoamine dendrimers: a second-order kinetic model for metal amine complexation. J Phys Chem B 115:13534–13540

    CAS  Google Scholar 

  • Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem Sci 2:1632–1646

    Article  CAS  Google Scholar 

  • Niu Y, Sun L, Crooks RM (2003) Determination of the intrinsic proton binding constants for poly(amidoamine) dendrimers via potentiometric pH titration. Macromolecules 36:5725–5731

    Article  CAS  Google Scholar 

  • Scott RWJ, Sivadinarayana C, Wilson OM, Yan Z, Goodman DW, Crooks RM (2005) Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors. J Am Chem Soc 127(5):1380–1381

    Article  CAS  Google Scholar 

  • Sun L, Crooks RM (2002) Interactions between dendrimers and charged probe molecules. 1. Theoretical methods for simulating proton and metal ion binding to symmetric polydentate ligands. J Phys Chem B 106:5864–5872

    CAS  Google Scholar 

  • Tomalia DA, Naylor AM, Goddard WA III (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29:138–175

    Article  Google Scholar 

  • Witham CA, Huang W, Tsung C-K, Kuhn JN, Somorjai GA, Toste FD (2010) Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat Chem 2:36–41

    CAS  Google Scholar 

  • Xu Y, Zhao D (2005) Removal of copper from contaminated soil by use of poly(amidoamine) dendrimers. Environ Sci Technol 39:2369–2375

    Article  CAS  Google Scholar 

  • Yamamoto D, Watanabe S, Miyahara MT (2010) Coordination and reduction processes in the synthesis of dendrimer-encapsulated Pt nanoparticles. Langmuir 26:2339–2345

    Article  CAS  Google Scholar 

  • Yamamoto D, Watanabe S, Miyahara MT (2011) Modeling Pt2+ coordination process within poly(amidoamine) dendrimers for synthesis of dendrimer-encapsulated Pt nanoparticles. Ind Eng Chem Res 50:7332–7337

    Article  CAS  Google Scholar 

  • Ye H, Scott RWJ, Crooks RM (2004) Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers. Langmuir 20:2915–2920

    Article  CAS  Google Scholar 

  • Ye H, Crooks JA, Crooks RM (2007) Effect of particle size on the kinetics of the electrocatalytic oxygen reduction reaction catalyzed by pt dendrimer-encapsulated nanoparticles. Langmuir 23:11901–11906

    Article  CAS  Google Scholar 

  • Zhao M, Crooks RM (1999) Dendrimer-encapsulated Pt nanoparticles: synthesis, characterization, and applications to catalysis. Adv Mater 11:217–220

    Article  CAS  Google Scholar 

  • Zhao M, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877–4878

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding through a partnership with KAU under Grant number 2107105600. We thank the Florida Center of Excellence for Drug Discovery and Innovation for use facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Kuhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, V.A., Barakat, M.A., Ramadan, M.H. et al. Metal ion remediation by polyamidoamine dendrimers: a comparison of metal ion, oxidation state, and titania immobilization. Int. J. Environ. Sci. Technol. 11, 1497–1502 (2014). https://doi.org/10.1007/s13762-013-0346-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0346-5

Keywords

Navigation