Skip to main content
Log in

Chromium(III) biosorption onto spent grains residual from brewing industry: equilibrium, kinetics and column studies

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The use of industrial wastes for wastewater treatment as a strategy to their re-use and valorisation may provide important advances toward sustainability. The present work gives new insights into heavy metal biosorption onto low-cost biosorbents, studying chromium(III) biosorption onto spent grains residual from a Portuguese brewing industry both in batch and expanded bed column systems. Experimental studies involved unmodified spent grains and spent grains treated with NaOH. Metal uptake followed a rapid initial step, well described by the pseudo-second-order kinetic model up to 2–7 h, indicating chemisorption to be the rate-limiting step. Beyond this period intraparticle diffusion assumed an important role in the uptake global kinetics. The best fit for equilibrium data was obtained using the Langmuir model, with unmodified spent grains having the higher maximum uptake capacity (q max = 16.7 mg g−1). In open system studies, using expanded bed columns, the best performance was also achieved with unmodified spent grains: Breakthrough time (C/C i = 0.25) and total saturation time (C/C i = 0.99) occurred after 58 and 199 h of operation, corresponding to the accumulation of 390 mg of chromium(III), 43.3 % of the total amount entering the column. These results suggest that alkali treatment does not improve spent grains uptake performance. Changes in biomass composition determined by Fourier transform infrared spectroscopy suggested hydroxyl groups and proteins to have an important role in chromium(III) biosorption. This study points out that unmodified spent grains can be successfully used as low-cost biosorbent for trivalent chromium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acheampong MA, Pereira JPC, Meulepas RJW, Lens PNL (2011) Biosorption of Cu(II) onto agricultural materials from tropical regions. J Chem Technol Biotechnol 86:1184–1194

    Article  CAS  Google Scholar 

  • Akar T, Celik S, Ari AG, Akar ST (2013) Nickel removal characteristics of an immobilized macro fungus: equilibrium, kinetic and mechanism analysis of the biosorption. J Chem Technol Biotechnol 88:680–689

    Article  CAS  Google Scholar 

  • Aksu Z (2001) Equilibrium and kinetic modeling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21:285–294

    Article  CAS  Google Scholar 

  • Aliyu S, Bala M (2011) Brewer’s spent grain: a review of its potentials and applications. Afr J Biotechnol 10(3):324–331

    CAS  Google Scholar 

  • Barka N, Abdennouri M, Boussaoud A, Makhfouk ME (2010) Biosorption characteristics of Cadmium(II) onto Scolymus hispanicus L. as low-cost natural biosorbent. Desalination 258:66–71

    Article  CAS  Google Scholar 

  • Benguella B, Benaissa H (2002) Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Res 36:2463–2474

    Article  CAS  Google Scholar 

  • Bernardo GR, Rene RM, Ma. Catalina AD (2009) Chromium(III) uptake by agrowastes biosorbents: chemical characterization, sorption–desorption studies, and mechanism. J Hazard Mater 170:845–854

    Article  CAS  Google Scholar 

  • Branyik T, Vicente A, Oliveira R, Teixeira J (2004) Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnol Bioeng 88:84–93

    Article  CAS  Google Scholar 

  • Carvalheiro F, Esteves MP, Parajo JC, Pereira H, Girio FM (2004) Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour Technol 91:93–100

    Article  CAS  Google Scholar 

  • Chojnacka K (2005) Biosorption of Cr(III) ions by eggshells. J Hazard Mater 121:167–173

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  Google Scholar 

  • Donmez G, Kocberber N (2005) Isolation of hexavalent chromium resistant bacteria from industrial saline effluents and their ability of bioaccumulation. Enzyme Microb Technol 36:700–705

    Article  Google Scholar 

  • Farinella NV, Matos GD, Arruda MAZ (2007) Grape bagasse as a potential biosorbent of metals in effluent treatments. Bioresour Technol 98:1940–1946

    Article  CAS  Google Scholar 

  • Fatima T, Nadeem R, Masood A, Saeed R, Ashraf M (2013) Sorption of lead by chemically modified rice. Int J Environ Sci Technol 10(6):1255–1264

    Article  CAS  Google Scholar 

  • Ferraz AI, Tavares MT, Teixeira JA (2005) Sorption of Cr(III) from aqueous solutions by spent brewery grain. In: Proceedings of the 9th international chemical engineering conference—CHEMPOR 2005. Coimbra, Portugal

  • Fonseca B, Maio H, Quintelas C, Teixeira A, Tavares T (2009) Retention of Cr(VI) and Pb(II) on a loamy sand soil: kinetics, equilibria and breakthrough. Chem Eng J 152:212–219

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, de la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez G, Cano-Aguilera I (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol 48(2):225–232

    Article  CAS  Google Scholar 

  • Gulnaz O, Saygideger S, Kusvuran E (2005) Study of Cu(II) biosorption by dried activated sludge: effect of physico-chemical environment and kinetics study. J Hazard Mater 120:193–200

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (2004) Sorption of copper(II) from aqueous solution by peat. Water Air Soil Pollut 158:77–97

    Article  CAS  Google Scholar 

  • Ho YS, Ng JCY, Mckay G (2000) Kinetics of pollutant sorption by biosorbents: review. Sep Purif Methods 29:189–232

    Article  CAS  Google Scholar 

  • Li Q, Chai L, Yang Z, Wang Q (2009a) Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions. Appl Surf Sci 255:4298–4303

    Article  CAS  Google Scholar 

  • Li J, Lin D, Zhang X, Yan Y (2009b) Kinetic Parameters and Mechanisms of the Batch Biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz Biomass. J Colloid Interface Sci 333:71–77

    Article  CAS  Google Scholar 

  • Loukidou MX, Zouboulis AI, Karapantsios TD, Matis KA (2004a) Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloids Surf A 242:93–104

    Article  CAS  Google Scholar 

  • Loukidou MX, Karapantsios TD, Zouboulis AI, Matis KA (2004b) Diffusion kinetic study of chromium(VI) biosorption by Aeromonas caviae. Ind Eng Chem Res 43:1748–1755

    Article  CAS  Google Scholar 

  • Low KS, Lee CK, Liew SC (2000) Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem 36:59–64

    Article  CAS  Google Scholar 

  • Low KS, Lee CK, Low CH (2001) Sorption of chromium (VI) by spent grain under batch conditions. J Appl Polym Sci 82:2128–2134

    Article  CAS  Google Scholar 

  • Lu S, Gibb SW (2008) Copper removal from wastewater using spent-grain as biosorbent. Bioresour Technol 99:1509–1517

    Article  CAS  Google Scholar 

  • Macheiner D, Adamitsch BF, Karner F, Hampel WA (2003) Pretreatment and hydrolysis of brewer’s spent grains. Eng Life Sci 3:401–405

    Article  CAS  Google Scholar 

  • Mack C, Wilhelmi B, Duncan JR, Burgess JE (2007) Biosorption of precious metals. Biotechnol Adv 25:264–271

    Article  CAS  Google Scholar 

  • Malik UR, Hasany SM, Subhani MS (2005) Sorptive potential of sunflower stem for Cr(III) ions from aqueous solutions and its kinetic and thermodynamic profile. Talanta 66:166–173

    Article  CAS  Google Scholar 

  • Marín ABP, Aguilar MI, Meseguer VF, Ortuño JF, Sáez J, Lloréns M (2009) Biosorption of chromium(III) by orange (Citrus cinensis) waste: batch and continuous studies. Chem Eng J 155:199–206

    Article  Google Scholar 

  • Marín ABP, Aguilar MI, Ortuño JF, Meseguer VF, Sáez J, Lloréns M (2010) Biosorption of Zn(II) by orange waste in batch and packed-bed systems. J Chem Technol Biotechnol 85:1310–1318

    Article  Google Scholar 

  • Miretzky P, Cirelli AF (2010) Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater 180:1–19

    Article  CAS  Google Scholar 

  • Nasernejad B, Zadeh TE, Pour BB, Bygi ME, Zamani A (2005) Comparison for biosorption modeling of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Process Biochem 40:1319–1322

    Article  CAS  Google Scholar 

  • Ozer A, Ozer D, Ekiz HI (2004) The equilibrium and kinetic modeling of the biosorption of copper(II) ions on Cladophora crispata. Adsorption 10:317–326

    Article  Google Scholar 

  • Quintelas C, Fonseca B, Silva B, Figueiredo H, Tavares T (2009) Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC. Bioresour Technol 100:220–226

    Article  CAS  Google Scholar 

  • Rafatullaha M, Sulaimana O, Hashima R, Ahmad A (2009) Adsorption of copper(II), chromium(III), nickel(II) and lead(II) ions from aqueous solutions by meranti sawdust. J Hazard Mater 170:969–977

    Article  Google Scholar 

  • Reddad Z, Gerente C, Andres Y, Thibault JF, Le Cloirec P (2003) Cadmium and lead adsorption by a natural polysaccharide in MF membrane reactor: experimental analysis and modeling. Water Res 37(16):3983–3991

    Article  CAS  Google Scholar 

  • Sawalha MF, Peralta-Videa JR, Saupe GB, Dokken KM, Gardea-Torresdey JL (2007) Using FTIR to corroborate the identity of functional groups involved in the binding of Cd and Cr to saltbush (Atriplex canescens) biomass. Chemosphere 66(8):1424–1430

    Article  CAS  Google Scholar 

  • Tarley CRT, Arruda MAZ (2004) Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents. Chemosphere 54:987–995

    Article  Google Scholar 

  • Veglio F, Beolchini F, Barba D (2000) Experimental study and simulation on the biosorption of copper(II) in membrane reactors: a preliminary study. Ind Eng Chem Res 39(7):2480–2484

    Article  CAS  Google Scholar 

  • Volesky B (ed) (2003) Equilibrium biosorption performance. Sorption and biosorption. BV Sorbex, Inc., Montreal, pp 103–116

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1962) Advances in water pollution research: removal of biologically resistant pollutants from waste waters by adsorption. In: Proceedings of international conference on water pollution symposium, vol 2. Pergamon Press, Oxford, pp 231–266

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Portuguese brewing industry UNICER for all the support and FCT (Fundação para a Ciência e a Tecnologia) financial support through the Grant PRAXIS XXI/BD/15945/98.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ferraz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraz, A.I., Amorim, C., Tavares, T. et al. Chromium(III) biosorption onto spent grains residual from brewing industry: equilibrium, kinetics and column studies. Int. J. Environ. Sci. Technol. 12, 1591–1602 (2015). https://doi.org/10.1007/s13762-014-0539-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0539-6

Keywords

Navigation