Skip to main content

Advertisement

Log in

Nano-nickel–copper alloy deposit for improved corrosion resistance in marine environment

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The nickel–copper alloy (70:30) prepared by metallurgical route is currently employed in marine environments because of its good resistance to corrosion. This alloy forms a thin protective surface layer when exposed to marine atmosphere and thus provides its corrosion resistance. Electrodeposition of nickel–copper alloy from sulphamate acetate-based electrolyte is a new and novel approach and was experimented. The detailed study was performed on the effect of electrolyte composition, current density and pH on the preparation of alloy deposit; the prepared alloy deposit particle size is of 78 nm, and the surface morphology of the alloy deposit was characterized with X-ray diffraction, scanning electron microscopy, EDAX, and atomic force microscope. Nickel–copper alloy deposited from the sulphamate acetate-based electrolyte operated at a temperature of 30 °C, with a pH of 6.6 and at 3 A/dm2, produces nickel–copper (70:30) alloy deposit. The corrosion behaviour of this alloy deposit was studied by potentiodynamic polarization method; the corrosion current of nickel is 8.67 μA cm−2 and the nickel–copper alloy is 2.65 μA cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd El Rehim SS, Abd El Wahab S, Rashwan SM, Anwar ZM (1999) Electrodeposition of copper–nickel alloys from a citrate bath containing boric acid. Trans IMF 77(6):242–245

    Google Scholar 

  • Alper M, Baykul MC, Peter L, Toth J, Bakonyi I (2004) Preparation and characterisation of electrodeposited Ni–Cu/Cu multilayers. J Appl Electrochem 34(8):841–848

    Article  CAS  Google Scholar 

  • Baskaran I, Sankaranarayanan TSN, Stephen A (2006) Pulsed electrodeposition of nano crystalline copper nickel alloy and evaluation of their characteristics. Mater Lett 60:1990–1995

    Article  CAS  Google Scholar 

  • Bonou L, Massiani Y, Crousier J (1994) Electrodeposition and corrosion behavior of copper–nickel alloy. Br Corros J 29:201–206

    Article  CAS  Google Scholar 

  • Bradley P, Roy S, Landolt D (1996) Pulse plating of copper–nickel alloys from sulfamate solution. J Chem Soc Faraday Trans 92:4015–4019

    Article  CAS  Google Scholar 

  • Chassaing E, Vu Quang K (1987) Mechanism of copper–nickel alloy electrodeposition. J Appl Electrochem 17:1267–1280

    Article  CAS  Google Scholar 

  • Cherkaoui M, Chassaing E, Vu Quang K (1988) Pulse plating of copper nickel alloy. Surf Coat Technol 34:243–252

    Article  CAS  Google Scholar 

  • Dube CE, Workie B, Kounaves SP, Robbat A Jr, Aksu ML (1995) Electrodeposition of metal alloy and mixed oxide films using a single-precursor tetranuclear copper–nickel complex. J Electrochem Soc 142(10):3357–3365

    Article  CAS  Google Scholar 

  • El-sayed sherif M, Almajid AA, Bairamov AK, Al-Zahrani E (2011) Corroison of Monal-400 in aerated stagnant Arabin gulf seawater after different exposure intervals. Int J Electrochem Sci 6:5430–5444

    Google Scholar 

  • Falke WL, Agnes Lee R, Schwaneke AE (1979). Electroplating with Ni-Cu alloy US patent., US 4,167,459 A

  • Ghosh SK, Grover AK, Totlani MK (1999) Nickel–copper alloy electroplating by pulse deposition. Bull Electrochem 15(5-6):174–178

    CAS  Google Scholar 

  • Green TA, Russell AE, Roy S (1998) The development of a stable citrate electrolyte for the electrodeposition of copper–nickel alloys. J Electrochem Soc 145(3):875–881

    Article  CAS  Google Scholar 

  • Horkans J, Chang ICH, Andricacos PC, Podlaha EJ (1991) Determination of partial currents for CuNi and CuCo electrodeposition using rotating ring-disk electrodes. J Electrochem Soc 138(2):411–416

    Article  CAS  Google Scholar 

  • Ishikawa M, Enomoto H, Matsuoaka M, Iwakura C (1995) Effect of some factors on electrodeposition of nickel copper alloy from pyrophosphate tetra borate baths. Electrochemica Acta 40(11):1663–1668

    Article  CAS  Google Scholar 

  • Ismail KM, Fathi AM, Badawy WA (2004) The influence of Ni content on the stability of copper–nickel alloys in alkaline sulphate solutions. J Appl Electrochem 34(8):823–831

    Article  CAS  Google Scholar 

  • Mizushima L, Chikazawa M, Watanabe T (1996) Microstructure of electrodeposited Cu–Ni binary alloy films. J Electrochem Soc 143(6):1978–1983

    Article  CAS  Google Scholar 

  • Mohan S, Rajasekaran N (2011) Influence of electrolyte pH on composition of corrosion properties and surface morphology of electrodeposited Cu–Ni alloy. Surf Eng 27(7):519–523

    Article  CAS  Google Scholar 

  • Ogden C (1986) High-strength, composite copper–nickel electrodeposits. Plat Surf Finish 73(5):130–134

    CAS  Google Scholar 

  • Podlaha EJ, Bonhote Ch, Landolt D (1994) A Mathematical model and experimental study of the electrodeposition of Ni–Cu alloys from complexing electrolytes. Electrochemica Acta 39(18):2649–2657

    Article  CAS  Google Scholar 

  • Priscott BH (1958) Electrodeposition of copper–nickel alloys from citrate solutions. Trans Inst Metal Finish 36:93–96

    Google Scholar 

  • Roy S, Landolt D (1995) Effect of off-time on the composition of pulse-plated Cu–Ni alloys. J Electrochem Soc 142(9):3021–3027

    Article  CAS  Google Scholar 

  • Roy S, Matlosz M, Landolt D (1994) Effect of corrosion on the composition of pulse-plated Cu–Ni alloys. J Electrochem Soc 141(6):1509–1517

    Article  CAS  Google Scholar 

  • Sobha J, Krishna N, Sujatha KP, Krishnan RM, Sriveeraraghavan S, Natarajan SR (1996) Electroplating of nickel copper alloys. Bull Electrochem 12:259–265

    Google Scholar 

  • Toth-Kadar E, Peter L, Becsei T, Toth J, Pogany L, Tarnoczi T, Kamasa P, Bakonyi I, Lang G, Cziraki A, Schwarzacherd W (2000) Preparation and magnetoresistance characteristics of electrodeposited Ni–Cu alloys and Ni–Cu/Cu multilayers. J Electrochem Soc 147(9):3311–3318

    Article  CAS  Google Scholar 

  • Vu Quang K, Chassaing E, Le Viet B, Celis JP, Roos JR (1985) Co-deposition of nickel and copper. Met Finish 83(10):25–26

    Google Scholar 

  • Ying RY, Patrick KNg, Mao Z, White RE (1988) Electrodeposition of copper–nickel alloys from citrate solution on rotating disc electrode. J Electrochem Soc 135(12):2964–2971

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are expressing earnest thanks and acknowledge for the funding support of this study to INTELCOAT–CSC-0114-Council of Scientific and Industrial Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Silaimani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silaimani, S.M., Vivekanandan, G. & Veeramani, P. Nano-nickel–copper alloy deposit for improved corrosion resistance in marine environment. Int. J. Environ. Sci. Technol. 12, 2299–2306 (2015). https://doi.org/10.1007/s13762-014-0591-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0591-2

Keywords

Navigation