Skip to main content

Advertisement

Log in

Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 20 June 2016

Abstract

In the last few decades of industrialization, the concentration of CO2 in the atmosphere had increased rapidly. Different organizations have invested considerable funds in research activities worldwide for CO2 capture and storage. To date, significant work has been done and various technologies have been proposed for CO2 capture and storage. Both adsorption and absorption are promising techniques for CO2 capture, but low-temperature adsorption processes using solid adsorbents are the prevailing technique nowadays. In this review paper, a variety of adsorbents such as carbonaceous materials, dry alkali metal-based sorbents, zeolites, metal–organic frameworks (MOFs) and microporous organic polymers (MOPs) have been studied. Various methods of chemical or physical modification and the effects of supporting materials have been discussed to enhance CO2 capture capacity of these adsorbents. Low-temperature (<100 °C) adsorption processes for CO2 capture are critically analyzed and concluded on the basis of information available so far in the literature. All the information in CO2 adsorption using different routes has been discussed, summarized and thoroughly presented in this review article. The most important comparative study of relatively new material MOFs and MOPs is carried out between the groups and with other sorbent as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agueda VI, Delgado JA, Uguina MA, Brea P, Spjelkavik AI, Blom R, Grande C (2015) Adsorption and diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 metal-organic framework extrudates. Chem Eng Sci 124:159–169

    Article  CAS  Google Scholar 

  • Amoros DC, Monge JA, Solano AL (1996) Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12:2820–2824

    Article  Google Scholar 

  • An J, Rosi NL (2010) Tuning MOF CO2 adsorption properties via cation exchange. J Am Chem Soc 132:5578–5579

    Article  CAS  Google Scholar 

  • Andres JM, Orjales L, Narros A, Fuente MM, Rodriguez ME (2013) Carbon dioxide adsorption in chemically activated carbon from sewage sludge. J Air Waste Manage 63:557–564

    Article  CAS  Google Scholar 

  • Anson A, Callejas MA, Benito AM, Maser WK, Izquierdo MT, Rubio B, Jagiello J, Thommes M, Parra JB, Martinez MT (2004) Hydrogen adsorption studies on single wall carbon nanotubes. Carbon 42:1243–1248

    Article  CAS  Google Scholar 

  • Arenillas A, Smith KM, Drage TC, Snape CE (2005) CO2 capture using some fly ash-derived carbon materials. Fuel 84:2204–2210

    Article  CAS  Google Scholar 

  • Arnold L, Averlant G, Marx S, Weickert M, Muller U, Mertel J, Horch C, Peksa M, Stallmach F (2013) Metal organic frameworks for natural gas storage in vehicles. Chem Ing Tech 85:1726–1733

    Article  CAS  Google Scholar 

  • Berlier K, Frere M (1997) Adsorption of CO2 on microprous activated carbon and silica gel. Chem Eng Data 42:533–537

    Article  CAS  Google Scholar 

  • Bermudez JM, Dominguez PM, Arenillas A, Cot J, Weber J, Luque R (2013) CO2 separation and capture properties of porous carbonaceous materials from leather residues. Material 6:4641–4653

    Article  CAS  Google Scholar 

  • Bonenfant D, Kharoune M, Niquette P, Mimeault M, Hausler R (2007) Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci Technol Adv Mater 9:7–13

    Google Scholar 

  • Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. PNAS 106:20637–20640

    Article  CAS  Google Scholar 

  • Builes S, Sandler SI, Xiong R (2013) Isosteric heats of gas and liquid adsorption. Langmuir 29:10416–10422

    Article  CAS  Google Scholar 

  • Caskey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130:10870–10871

    Article  CAS  Google Scholar 

  • Cavenati S, Grande CA, Rodrigues AE (2004) Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. Chem Eng Data 49:1095–1101

    Article  CAS  Google Scholar 

  • Chen C, Ahn WS (2014) CO2 adsorption on LTA zeolites: effect of mesoporosity. Appl Surf Sci 311:107–109

    Article  CAS  Google Scholar 

  • Chen XP, Wu Y, Dong W, Zhao CW (2012) 21st International on fluidized bed combustion conference. Naples, Italy, pp 3–6

  • Chen DL, Shang H, Zhu W, Krishna R (2015) Reprint of transient breakthroughs of CO2/CH4 and C3H6/C3H8 mixtures infixed beds packed with Ni-MOF-74. Chem Eng Sci 124:109–117

    Article  CAS  Google Scholar 

  • Cho HY, Yang DA, Kim J, Jeong SY, Ahn WS (2012) CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catal Today 185:35–40

    Article  CAS  Google Scholar 

  • Choi S, Watanabe T, Bae TH, Sholl DS, Jones CW (2012) Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from Ultradilute Gases. Phys Chem Lett 3:1136–1141

    Article  CAS  Google Scholar 

  • Choudhary VR, Mayadevi S, Singh AP (1995) Sorption isotherms of methane, ethane, ethene and carbon dioxide on NaX, NaY and Namordenite zeolites. Chem Soc Faraday Trans 91:2935–2944

    Article  CAS  Google Scholar 

  • Cinke M, Li J, Bauschlicher JCW, Ricca A, Meyyappan M (2003) CO2 Adsorption in single-walled carbon nanotubes. Chem Phys Lett 376:761–766

    Article  CAS  Google Scholar 

  • Couck S, Denayer JFM, Baron GV, Remy T, Gascon J, Kapteijn F (2009) An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J Am Chem Soc 131:6326–6327

    Article  CAS  Google Scholar 

  • David E, Kopac J (2014) Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J Anal Appl Pyrol 110:322–332

    Article  CAS  Google Scholar 

  • Dong W, Chen X, Wu Y, Zhao C, Liu CL (2012) Carbonation characteristics of dry sodium-based sorbents for CO2 capture. Energy Fuel 26:6040–6046

    Article  CAS  Google Scholar 

  • Drage TC, Kozynchenko O, Pevida C, Plaza MG, Rubiera F, Pis JJ, Snape CE, Tennison S (2009a) Developing activated carbon adsorbents for pre-combustion CO2 capture. Energy Procedia 1:599–605

    Article  CAS  Google Scholar 

  • Drage TC, Smith KM, Pevida C, Arenillas A, Snape CE (2009b) Development of adsorbent technologies for post-combustion CO2 capture. Energy Procedia 1:881–884

    Article  CAS  Google Scholar 

  • Dulal HB, Akbar S (2013) Greenhouse gas emission reduction options for cities: finding the “Coincidence of Agendas” between local priorities and climate change mitigation objectives. Habitat Int 38:100–105

    Article  Google Scholar 

  • Dunne JA, Mariwala R, Rao M, Sircar S, Gorte RJ, Myers AL (1996) Calorimetric heats of adsorption and adsorption isotherms. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12:5888–5895

    Article  CAS  Google Scholar 

  • Ertan A (2004) CO2, N2 and Ar adsorption on zeolites. Dissertation, Izmir Institute of Technology

  • European Technology Platform for Zero Emission Fossil Fuel Power Plants (2014) CO2 capture technologies. http://www.zeroemissionsplatform.eu/ccs-technology/capture.html. Accessed 17 Dec 2014

  • Fan Y, Lively RP, Labreche Y, Rezaei F, Koros WJ, Jones CW (2014) Evaluation of CO2 adsorption dynamics of polymer/silica supported poly (ethylenimine) hollow fiber sorbents in rapid temperature swing adsorption. Int J Greenh Gas Con 21:61–71

    Article  CAS  Google Scholar 

  • Foeth F, Andersson M, Bosch H, Aly G, Reith T (1994) Separation of dilute CO2/CH4 mixtures by adsorption on activated carbon. Separ Sci Technol 29:93–118

    Article  CAS  Google Scholar 

  • France World Energy Outlook (2012) Earth policy institute from International Energy Agency, Paris, pp 552–554

  • Gadipelli S, Guo ZX (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci 69:1–60

    Article  CAS  Google Scholar 

  • Ganesh I (2013) Conversion of carbon dioxide into methanol–a potential liquid fuel: fundamental challenges and opportunities. Renew Sust Energ Rev 31:221–257

    Article  CAS  Google Scholar 

  • Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao CNR (2008) Uptake of H2 and CO2 by graphene. J Phys Chem C 112:15704–15707

    Article  CAS  Google Scholar 

  • Ginter DM, Went GT, Bell AT, Radke CJ (1992) A physicochemical study of the aging of colloidal silica gels used in zeolite Y synthesis. Zeolites 12:733–741

    Article  CAS  Google Scholar 

  • Goetz V, Pupier O, Guillot A (2006) Carbon dioxide-methane mixture adsorption on activated carbon. Adsorption 12:55–63

    Article  CAS  Google Scholar 

  • Gonzalez AS, Plaza MG, Pis JJ, Rubiera F, Pevida C (2013) Post-combustion CO2 capture adsorbents from spent coffee grounds. Energy Procedia 37:134–141

    Article  CAS  Google Scholar 

  • Green DA, Nelson TO, Turk BS, Box PD, Gupta RP (2006) Carbon dioxide capture from flue gas using dry regenerable sorbents. DOE Cooperative Agreement No. DE-FC26-00NT40923

  • Guo B, Chang L, Xiel K (2006) Adsorption of carbon dioxide on activated carbon. J Nat Gas Chem 15:223–229

    Article  CAS  Google Scholar 

  • Guo Y, Zhao C, Li C, Lu S (2013) Application of PEI–K2CO3/AC for capturing CO2 from flue gas after combustion. Appl Energy 129:17–24

    Article  CAS  Google Scholar 

  • Hao GP, Li WC, Qian D et al (2011) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22:853–857

    Article  CAS  Google Scholar 

  • Harlick PJE, Tezel FH (2004) An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater 76:71–79

    Article  CAS  Google Scholar 

  • Harsono SS, Grundman P, Lau LH, Hansen A, Salleh MAM, Aurich AM, Idris A, Ghazi TIM (2013) Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches. Resourc Conserv Recycl 77:108–115

    Article  Google Scholar 

  • Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T (1998) Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K2CO3-on-carbon. Ind Eng Chem Res 37:185–191

    Article  CAS  Google Scholar 

  • He Y, Zhu X, Li Y, Peng C, Hu J, Liu H (2015) Efficient CO2 capture by triptycene-based microporous organic polymer with functionalized modification. Micropor Mesopor Mat 214:181–187

    Article  CAS  Google Scholar 

  • Heidari A, Younesi H, Rashidi A, Ghoreyshi A (2014) Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: effect of chemical activation. J Taiwan Inst Chem E 45:579–588

    Article  CAS  Google Scholar 

  • Ho TH, Howes T, Bhandari BR (2014) Encapsulation of gases in powder solid matrices and their applications: a review. Powder Technol 259:87–108

    Article  CAS  Google Scholar 

  • Hoffman JS, Pennline HW (2001) Proceedings of first national conference on carbon sequestration, Washington

  • Hudson MR, Queen, WL, Mason, JA, Fickel, DW, Lobo, RF, Brown CM (2012) Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J Am Chem Soc 134:1970–1973

    Article  CAS  Google Scholar 

  • Ishibe T, Sato T, Hayashi T, Kato N, Hata T (1995) Absorption of nitrogen dioxide and nitric oxide by soda lime. Br J Anaesth 75:330–333

    Article  CAS  Google Scholar 

  • Iwan A, Stephenson H, Ketchie WC, Lapkin AA (2009) High temperature sequestration of CO2 using Lithium Zirconates. Chem Eng J 146:249–258

    Article  CAS  Google Scholar 

  • Jiang Q, Rentschler J, Sethia G, Weinman S, Perrone R, Liu K (2013) Synthesis of T-type zeolite nanoparticles for the separation of CO2/N2 and CO2/CH4 by adsorption process. Chem Eng J 230:380–388

    Article  CAS  Google Scholar 

  • Jin H, Zhang X (2011) Chemical-looping combustion for power generation and carbon dioxide (CO2) capture. In: Zheng L (ed) Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture, 1st edn. Elsevier, UK, pp 294–318

    Chapter  Google Scholar 

  • Kaithwas A, Prasad M, Kulshreshtha A, Verma J (2012) Industrial wastes derived solid adsorbents for CO2 capture. Chem Eng Res Des 90:1632–1641

    Article  CAS  Google Scholar 

  • Kamiuto K, Abe S, Ermalina (2002) Effect of desorption temperature on CO2 adsorption equilibria of the honeycomb zeolite beds. Appl Energy 72:555–564

    Article  CAS  Google Scholar 

  • Karra JR, Grabicka BE, Huang YG, Walton KS (2013) Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal-organic framework (MOF-14). J Colloid Interf Sci 392:331–336

    Article  CAS  Google Scholar 

  • Katoh M, Yoshikawa T, Tomonari T, Katayama K, Tomida T (2000) Adsorption characteristics of ion-exchanged ZSM-5 zeolites for CO2/N2 mixtures. J Colloid Interf Sci 226:145–150

    Article  CAS  Google Scholar 

  • Katsoulidis AP, Kanatzidis MG (2011) Phloroglucinol based microporous polymeric organic frameworks with –OH functional groups and high CO2 capture capacity. Chem Mater 23:1818–1824

    Article  CAS  Google Scholar 

  • Kondakindi RR, McCumbera G, Aleksic S, Whittenbergerb W, Abraham MA (2013) Na2CO3-based sorbents coated on metal foil: CO2 capture performance. Int J Greenh Gas Con 15:65–69

    Article  CAS  Google Scholar 

  • Kong Y, Shen X, Cui S, Fan M (2015) Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture. Appl Energy 147:308–317

    Article  CAS  Google Scholar 

  • Lee SC, Choi BY, Lee TJ, Ryu CK, Ahn YS, Kim JC (2005) CO2 absorption and regeneration of alkali metal-based solid sorbents. Catal Today 111:385–390

    Article  CAS  Google Scholar 

  • Lee JY, Olson DH, Pan L, Emge TJ, Li J (2007) Microporous metal–organic frameworks with high gas sorption and separation capacity. Adv Funct Mater 17:1255–1262

    Article  CAS  Google Scholar 

  • Lee JB, Ryu CK, Baek J, Lee JH, Eom TH, Kim SH (2008a) Sodium-based dry regenerable sorbent for carbon dioxide capture from power plant flue gas. Ind Eng Chem Res 47:4465–4472

    Article  CAS  Google Scholar 

  • Lee SC, Chae HJ, Lee SJ, Choi BY, Yi CK, Lee JB, Ryu CK, Kim JC (2008b) Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environ Sci Technol 42:2736–2741

    Article  CAS  Google Scholar 

  • Lee SC, Chae HJ, Lee SJ, Park YH, Ryu CK, Yi CK, Kim JC (2009) Novel regenerable potassium-based dry sorbents for CO2 capture at low temperatures. J Mol Catal B-Enzym 56:179–184

    Article  CAS  Google Scholar 

  • Lee SC, Kwon YM, Ryu CY, Chae HJ, Ragupathy D, Jung SY, Lee JB, Ryu CK, Kim JC (2011) Development of new alumina-modified sorbents for CO2 sorption and regeneration at temperatures below 200°C. Fuel 60:1465–1470

    Article  CAS  Google Scholar 

  • Lee CS, Ong YL, Aroua MK, Daud WMAW (2013) Impregnation of palm shell-based activated carbon with sterically hindered amines for CO2 adsorption. Chem Eng J 219:558–564

    Article  CAS  Google Scholar 

  • Lee JB, Byun W, Lee SH, Do M (2014) Correlation between optimal car sharing locations and carbon dioxide emissions in urban areas. Int J Environ Sci Technol 11:2319–2328

    Article  CAS  Google Scholar 

  • Lesley H (2014) Climate change [Online Video]. https://learn.open2study.com/mod/youtube/view.php?id=38107. Accessed 25 October 2014

  • Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1990) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Google Scholar 

  • Li F, Yi H, Tang X, Ning P, Yu Q (2010) Adsorption of carbon dioxide on coconut shell activated carbon, presented at management and service science. Intern Confe IEEE, China, pp 1–4

    Google Scholar 

  • Li Y, Yi H, Tang X, Li F, Yuan Q (2013) Adsorption separation of CO2/CH4 gas mixture on the commercial zeolites at atmospheric pressure. Chem Eng J 229:50–56

    Article  CAS  Google Scholar 

  • Liang Y, Harrison DP, Gupta RP, Green DA, McMichael WJ (2004) Carbon dioxide capture using dry sodium-based sorbents. Energy Fuels 18:569–575

    Article  CAS  Google Scholar 

  • Lin Y, Yan Q, Kong C, Chen L (2013) Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci Report. doi:10.1038/srep01859

    Google Scholar 

  • Liu Y, Liu J, Chang M, Zheng C (2012) Theoretical studies of CO2 adsorption mechanism on linkers of metal-organic frameworks. Fuel 95:521–527

    Article  CAS  Google Scholar 

  • Llewellyn PL, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, Weireld GD, Chang JS, Hong DY, Hwang YK, Jhung SH, Ferey G (2008) High uptakes of CO2 and CH4 in mesoporous metals organic frameworks MIL-100 and MIL-101. Langmuir 24:7245–7250

    Article  CAS  Google Scholar 

  • Lou W, Yang J, Li L, Li J (2014) Adsorption and separation of CO2 on Fe(II)-MOF-74: effect of the open metal coordination site. J Solid State Chem 213:224–228

    Article  CAS  Google Scholar 

  • Lu C, Bai H, Wu B, Su F, Hwang JF (2008) Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22:3050–3056

    Article  CAS  Google Scholar 

  • Lu W, Yuan D, Sculley J, Zhao D, Krishna R, Zhou HC (2011) Sulfonate-grafted porous polymer networks for preferential co2 adsorption at low pressure. J Am Chem Soc 133:18126–18129

    Article  CAS  Google Scholar 

  • Maroto-Valer MM, Tang Z, Zhang Y (2005) CO2 capture by activated and impregnated anthracites. Fuel Process Technol 86:1487–1502

    Article  CAS  Google Scholar 

  • Martin CF, Stockel E, Clowes R, Adams DJ, Cooper AI, Pis JJ, Rubiera F, Pevida C (2011) Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. J Mater Chem 21:5475–5483

    Article  CAS  Google Scholar 

  • Masoomi MY, Stylianou KC, Morsali A, Retailleau P, Maspoch D (2014) Selective CO2 capture in metal-organic frameworks with azine functionalized pores generated by mechanosynthesis. Cryst Growth Des 14:2092–2096

    Article  CAS  Google Scholar 

  • Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999

    Article  CAS  Google Scholar 

  • Park KS, Ni Z, Cote AP, Choi JY, Huang RD, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006a) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103:10186–11019

    Article  CAS  Google Scholar 

  • Park SW, Sung DH, Choi BS, Oh KJ, Moon KH (2006b) Sorption of carbon dioxide onto sodium carbonate. Separ Sci Technol 41:2665–2684

    Article  CAS  Google Scholar 

  • Pham TD, Xiong R, Sandler SI, Lobo RF (2014) Experimental and computational studies on the adsorption of CO2 and N2 on pure silica zeolites. Micropor Mesopor Mat 185:157–166

    Article  CAS  Google Scholar 

  • Plaza MG, Pevida C, Arias B, Fermoso J, Casal MD, Martín CF, Rubiera F, Pis JJ (2009) Development of low-cost biomass-based adsorbents for postcombustion CO2 capture. Fuel 88:2442–2447

    Article  CAS  Google Scholar 

  • Poshusta JC, Tuan VA, Pape EA, Noble RD, Falconer JL (2004) Separation of light gas mixtures using SAPO-34 membranes. AIChE J 46:779–789

    Article  Google Scholar 

  • Queen WL, Hudson MR, Bloch ED et al (2014) Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M ¼ Mg, Mn, Fe Co, Ni, Cu, Zn). Chem Sci 5:4569–4581

    Article  CAS  Google Scholar 

  • Rabbani MG, El-Kaderi HM (2011) Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem Mater 23:1650–1653

    Article  CAS  Google Scholar 

  • Radosz M, Hu X, Krutkrarnelis K, Shen Y (2008) Flue-gas carbon capture on carbonaceous sorbents: toward a low-cost multifunctional carbon filter for “green” energy producers. Ind Eng Chem Res 47:3783–3794

    Article  CAS  Google Scholar 

  • Rao AB, Rubin ES (2002) A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36:4467–4475

    Article  CAS  Google Scholar 

  • Reddy PMK, Krushnamurty K, Mahammadunnisa SK, Dayamani A, Subrahmanyam C (2015) Preparation of activated carbons from bio-waste: effect of surface functional groups on methylene blue adsorption. Int J Environ Sci Technol 12:1363–1372

    Article  CAS  Google Scholar 

  • Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654

    Article  CAS  Google Scholar 

  • Rufford TE, Jurcakova DH (2013) Surface functionalities. In: Zhu J (ed) Green carbon materiels. CRC Press, Boca Raton, pp 3–13

    Google Scholar 

  • Rydberg J, Klaminder J, Rosen P, Bindler R (2010) Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes. Sci Total Environ 408:4778–4783

    Article  CAS  Google Scholar 

  • Saha D, Deng S (2010) Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. Colloid Interface Sci 345:402–409

    Article  CAS  Google Scholar 

  • Salmasi M, Fatemi S, Rad MD, Jadidi F (2013) Study of carbon dioxide and methane equilibrium adsorption on silicoaluminophosphate-34 zeotype and T-type zeolite as adsorbent. Int J Environ Sci Technol 10:1067–1074

    Article  CAS  Google Scholar 

  • Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R (2011) Post-combustion CO2 capture using solid sorbents. Ind Eng Chem Res 51:1438–1463

    Article  CAS  Google Scholar 

  • Seo Y, Jo SH, Ryu CK, Yi CK (2007) Effects of water vapor pretreatment time and reaction temperature on CO2 capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor. Chemosphere 69:712–718

    Article  CAS  Google Scholar 

  • Silva JAC, Cunha AF, Schumann K, Rodrigues AE (2014) Binary adsorption of CO2/CH4 in binderless beads of 13X zeolite. Micropor Mesopor Mat 187:100–107

    Article  CAS  Google Scholar 

  • Siriwardane RV, Shen MS, Fisher EP, Poston JA (2001) Adsorption of CO2 on molecular sieves and activated carbon. Energ Fuel 15:279–284

    Article  CAS  Google Scholar 

  • Siriwardane RV, Shen MS, Fisher EP (2003) Adsorption of CO2, N2, and O2 on natural zeolites. Energ Fuel 17:571–576

    Article  CAS  Google Scholar 

  • Siriwardane RV, Robinson C, Shen M, Simonyi T (2007) Novel regenerable sodium-based sorbents for CO2 capture at warm gas temperatures. Energ Fuel 21:2088–2097

    Article  CAS  Google Scholar 

  • Somy A, Mehrnia MR, Amrei HD, Ghanizadeh A, Safari MH (2009) Adsorption of carbon dioxide using impregnated activated carbon promoted by zinc. Int J Greenh Gas Control 3:249–254

    Article  CAS  Google Scholar 

  • Stewart C, Hessami M (2005) A study of methods of carbon dioxide capture and sequestration–the sustainability of a photosynthetic bioreactor approach. Energ Convers Manage 46:403–420

    Article  CAS  Google Scholar 

  • Su F, Lu C, Cnen W, Bai H, Hwang JF (2009) Capture of CO 2  from flue gas via multiwalled carbon nanotubes. Sci Total Environ 407:3017–3023

    Article  CAS  Google Scholar 

  • Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (2011) Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Chem Rev 112:724–730

    Article  CAS  Google Scholar 

  • Sundquist ET, Visser K (2014) The geologic history of the carbon cycle—from treatise on geochemistry. In: Schlesinger WH (ed) Woods Hole, USA, pp 425–472

  • Thiruvenkatachari R, Su S, An H, Yu XX (2009) Post combustion CO2 capture by carbon fibre monolithic adsorbents. Prog Energ Combust 35:438–455

    Article  CAS  Google Scholar 

  • Thomas AB (2012) Carbon dioxide information analysis center. Global Fossil-Fuel Carbon Emissions. U.S. Department of Energy. http://cdiac.ornl.gov/trends/emis/glo.html. Accessed 23 Oct 2014

  • United State of America. Center for climate and energy solutions (2013) EPA regulation of greenhouse gas emissions from new power plants. 2101 Wilson Blvd. Suite 550 Arlington, VA 22201

  • Uzun A, Keskin S (2014) Site characteristics in metal organic frameworks for gas adsorption. Prog Surf Sci 89:56–79

    Article  CAS  Google Scholar 

  • Vaart RVD, Huiskes C, Bosch H, Reith T (2000) Single and mixed gas adsorption equilibria of carbon dioxide/methane on activated carbon. Adsorption 6:311–323

    Article  Google Scholar 

  • Wall TF (2007) Combustion processes for carbon capture. P Combust Inst 31:31–47

    Article  CAS  Google Scholar 

  • Wang Y, Zhou Y, Liu C, Zhou L (2008) Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids Surfaces A 322:14–18

    Article  CAS  Google Scholar 

  • Wang Q, Luo J, Zhong Z, Borgna A (2010) CO2 capture by solid adsorbents and their applications: current status and new trends. Energ Environ Sci 4:42–55

    Article  Google Scholar 

  • Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4:5800–5806

    Article  CAS  Google Scholar 

  • Webley PA (2014) Adsorption technology for CO2 separation and capture: a perspective. Adsorption 20:225–231

    Article  CAS  Google Scholar 

  • White RJ, Yoshizawa N, Antonietti M, Titirici MM (2011) A sustainable synthesis of nitrogen-doped carbon aerogels. Green Chem 13:2428–2434

    Article  CAS  Google Scholar 

  • Wu L, Xue M, Qiu SL, Chaplais G, Masseron AS, Patarin J (2012) Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy. Micropor Mesopor Mater 157:75–81

    Article  CAS  Google Scholar 

  • Xing W, Liu C, Zhou Z, Zhou J, Wang G, Zhuo S, Xue Q, Song L, Yan Z (2014) Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons. Nanoscale Res Lett 9:189–196

    Article  CAS  Google Scholar 

  • Xu WY, Huang SY, Luo F (2014) A novel acylamide MOF showing self-catenated hxg-d-4-Fddd nets with 3-fold interpenetration and highly selective adsorption of CO2 over N2, CH4, and CO. Inorg Chem Commun 49:56–58

    Article  CAS  Google Scholar 

  • Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture. J Environ Sci 20:14–27

    Article  CAS  Google Scholar 

  • Yaumi AL, Hussien IA, Shawabkeh RA (2012) Surface modification of oil fly ash and its application in selective capturing of carbon dioxide. Appl Surf Sci 266:118–125

    Article  CAS  Google Scholar 

  • Yazaydın AO, Snurr RQ, Park TH et al (2009) Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J Am Chem Soc 131:18198–18199

    Article  CAS  Google Scholar 

  • Yi CK, Jo SH, Seo Y, Lee JB, Ryu CK (2007) Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors. Int J Greenh Gas Con 1:31–36

    Article  CAS  Google Scholar 

  • Yoo YS, Ban HJ, Cheon KH, Lee JI (2009) The effect of aging on synthesis of zeolite at high temperature. Material Science Forum 620:225–228

    Article  Google Scholar 

  • Yoon JH, Heo NH (1992) A study on hydrogen encapsulation in CS2.5-zeolite A. J Phys Chem 96:4997–5000

    Article  CAS  Google Scholar 

  • Yu CH, Huang CH, Tan CS (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769

    CAS  Google Scholar 

  • Zhang J (2013) Design and synthesis of metal organic frameworks for co2 separation and catalysis. Dissertation, The State University of New Jersey

  • Zhang Z, Xu M, Wang H, Li Z (2010) Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia. Chem Eng J 160:571–577

    Article  CAS  Google Scholar 

  • Zhang J, Burke N, Zhang S, Liu K, Pervukhina M (2014a) Thermodynamic analysis of molecular simulations of CO2 and CH4 adsorption in FAU zeolites. Chem Eng Sci 113:54–61

    Article  CAS  Google Scholar 

  • Zhang Z, Wang H, Chen X, Xie R, Gao P, Wei W, Sun Y (2014b) CO2 sorption in wet ordered mesoporous silica kit-6: effects of water content and mechanism on enhanced sorption capacity. Adsorption 20:883–888

    Article  CAS  Google Scholar 

  • Zhao C, Chen X, Zhao C (2009) CO2 absorption using dry potassium-based sorbents with different supports. Energ Fuels 23:4683–4687

    Article  CAS  Google Scholar 

  • Zhao L, Bacsik Z, Hedin N, Wei W, Sun Y, Antonietti M, Titirici MM (2010) Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. ChemSusChem 3:840–845

    Article  CAS  Google Scholar 

  • Zhao C, Chen X, Zhao C (2011) K2CO3/Al2O3 for capturing CO2 in flue gas from power plants. Part 4: abrasion characteristics of the K2CO3/Al2O3 sorbent. Energ fuel 26:1395–1400

    Article  CAS  Google Scholar 

  • Zhao Y, Shen Y, Bai L, Ni S (2012) Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling. Appl Surf Sci 261:708–716

    Article  CAS  Google Scholar 

  • Zhao C, Chen X, Anthony EJ, Jiang X, Lunbo D, Wu Y, Dong W, Zhao Ch (2013) Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Prog Energ Combust 39:515–534

    Article  Google Scholar 

  • Zhu X, Do-Thanh CL, Murdock CR, et al. (2013) Efficient CO2 capture by a 3D porous polymer derived from Tröger’s base. ACS Macro Lett 2:660–663

    Article  CAS  Google Scholar 

  • Zhu XL, Wang PY, Peng C, Yang J, Yan XB (2014) Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chin Chem Lett 25:929–932

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sumathi.

Abbreviations

AC

Activated carbon

BET

Brunauer, Emmett and Teller

BILP-1

Benzimidazole-linked polymer

CCS

Carbon capturing and storage

CLC

Chemical looping combustion

CMPs

Conjugated microporous polymers

CNTs

Carbon nanotubes

COFs

Covalent organic frameworks

DTA

Differential thermal analysis

GC

Gas chromatography

GCMC

Grand Canonical Monte Carlo

HCPs

Hypercrosslinked polymers

IEA

International Energy Agency

IGCC

Integrated gasification combined cycle

IPCC

International Panel on Climate Change

M

Na or K

MOFs

Metal–organic framework

MOPs

Microporous organic polymers

NPMs

Non-covalent porous materials

PAFs

Porous aromatic frameworks

PBIs

Polybenzimidazoles

PPNs

Porous polymer networks

PSA

Pressure swing adsorption

PSAC

Palm shell activated carbon

PXRD

Powder X-ray diffraction

Qst

Heat of CO2 adsorption

SWNTs

Single-walled carbon nanotubes

TCD

Thermal conductivity detector

TGA

Thermogravimetric analysis

TPD

Temperature-programmed desorption

TPPs

Triptycene-based polymers

WEO

World Energy Outlook

WGSR

Water–gas shift reaction

ZTFs

Zeolite tetrazolate frameworks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younas, M., Sohail, M., Leong, L.K. et al. Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int. J. Environ. Sci. Technol. 13, 1839–1860 (2016). https://doi.org/10.1007/s13762-016-1008-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1008-1

Keywords

Navigation