Skip to main content
Log in

High efficacy on diclofenac removal by activated carbon produced from potato peel waste

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, a novel porous carbon obtained by K2CO3 activation of potato peel waste under optimized conditions was applied for the first time as liquid-phase adsorbent of sodium diclofenac in parallel with a commercial activated carbon. The biomass-activated carbon presented an apparent surface area of 866 m2 g−1 and well-developed microporous structure with a large amount of ultramicropores. The obtained carbon presented leaching and ecotoxicological properties compatible with its safe application to aqueous medium. Kinetic data of laboratory-made and commercial sample were best fitted by the pseudo-second-order model. The commercial carbon presented higher uptake of diclofenac, but the biomass carbon presented the higher adsorption rate which was associated with its higher hydrophilic nature which favoured external mass transfer. Both adsorbents presented adsorption isotherms that were best fitted by Langmuir model. The biomass carbon and the commercial carbon presented adsorption monolayer capacities of 69 and 146 mg g−1, and Langmuir constants of 0.38 and 1.02 L mg−1, respectively. The better performance of the commercial sample was related to its slightly higher micropore volume, but the most remarkable effect was the competition of water molecules in the biomass carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aburto J, Moran M, Galano A, Torres-García E (2015) Non-isothermal pyrolysis of pectin: a thermochemical and kinetic approach. J Anal Appl Pyrolysis 112:94–104. doi:10.1016/j.jaap.2015.02.012

    Article  CAS  Google Scholar 

  • Ahokas M, Välimaa A, Lötjönen T, Kankaala A, Taskila S, Virtanen E (2014) Resource assessment for potato biorefinery: side stream potential in Northern Ostrobothnia. Agron Res 12(3):695–704

    Google Scholar 

  • Arapoglou D, Varzakas T, Vlyssides A, Israilides C (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30:1898–1920. doi:10.1016/j.wasman.2010.04.017

    Article  CAS  Google Scholar 

  • Baccar R, Sarrà M, Bouzid J, Feki M, Blánquez P (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317. doi:10.1016/j.cej.2012.09.099

    Article  Google Scholar 

  • Bozym M, Florczak I, Zdanowska P, Wojdalski J, Klimkiewicz M (2015) An analysis of metal concentrations in food wastes for biogas production. Renew Energ 77:467–472. doi:10.1016/j.renene.2014.11.010

    Article  CAS  Google Scholar 

  • Burkina V, Zlabek V, Zamaratskaia G (2015) Effects of pharmaceuticals present in aquatic environment on Phase I metabolism in fish. Environ Toxicol Pharmacol 40:430–444. doi:10.1016/j.etap.2015.07.016

    Article  CAS  Google Scholar 

  • Cabrita I, Ruiz B, Mestre A, Fonseca I, Carvalho A, Ania C (2010) Removal of an analgesic using activated carbons prepared from urban and industrial residues. Chem Eng J 163:249–255. doi:10.1016/j.cej.2010.07.058

    Article  CAS  Google Scholar 

  • Carabineiro S, Thavorn-Amornsri T, Pereira M, Serp P, Figueiredo J (2012) Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal Today 186:29–34. doi:10.1016/j.cattod.2011.08.020

    Article  CAS  Google Scholar 

  • Delgado L, Charles P, Glucina K, Morlay C (2012) The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon—a review. Sci Total Environ 435–436:509–525. doi:10.1016/j.scitotenv.2012.07.046

    Article  Google Scholar 

  • El-Shafey E, Al-Lawati H, Al-Hussaini A (2014) Adsorption of fexofenadine and diphenhydramine on dehydrated and activated carbons from date palm leaflets. Chem Ecol 30(8):765–783. doi:10.1080/02757540.2014.894986

    Article  CAS  Google Scholar 

  • EU (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union, OJ L 226, 24.8.2013, pp 1–17

  • Evgenidou E, Konstantinou I, Lambropoulou D (2015) Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review. Sci Total Environ 505:905–926. doi:10.1016/j.scitotenv.2014.10.021

    Article  CAS  Google Scholar 

  • FAOSTAT (2015) Food and Agriculture Organization of the United Nations Statistics Division. http://faostat3.fao.org/home/E. Accessed December 2015

  • Fernandez M, Ledesma B, Román S, Bonelli P, Cukierman A (2015) Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresour Technol 183:221–228. doi:10.1016/j.biortech.2015.02.035

    Article  CAS  Google Scholar 

  • Franz M, Arafat H, Pinto N (2000) Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 38:1807–1819. doi:10.1016/S0008-6223(00)00012-9

    Article  CAS  Google Scholar 

  • Guinesi L, da Róz Corradini E, Mattoso L, Teixeira E, Curvelo A (2006) Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochim Acta 447:190–196. doi:10.1016/j.tca.2006.06.002

    Article  CAS  Google Scholar 

  • Gupta S, Bhattacharyya K (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interface Sci 162:39–58. doi:10.1016/j.cis.2010.12.004

    Article  Google Scholar 

  • Gurten I, Ozmak M, Yagmur E, Aktas Z (2012) Preparation and characterisation of activated carbon from waste tea using K2CO3. Biomass Bioenerg 37:73–81. doi:10.1016/j.biombioe.2011.12.030

    Article  CAS  Google Scholar 

  • Ho Y (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689. doi:10.1016/j.jhazmat.2005.12.043

    Article  CAS  Google Scholar 

  • Hoseinzadeh E, Samarghandi M, McKay G, Rahimi N, Jafari J (2013) Removal of acid dyes from aqueous solution using potato peel waste biomass: a kinetic and equilibrium study. Desal Water Treat 52(25–27):1–8. doi:10.1080/19443994.2013.810355

    Google Scholar 

  • Huerta-Fontela M, Galceran M, Ventura F (2011) Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res 45:1432–1442. doi:10.1016/j.watres.2010.10.036

    Article  CAS  Google Scholar 

  • Jodeh S, Abdelwahab F, Jaradat N, Warad I, Jodeh W (2015) Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC). J Assoc Arab Univ Basic Appl Sci. doi:10.1016/j.jaubas.2014.11.002

    Google Scholar 

  • Jung C, Park J, Lim K, Park S, Heo J, Her N, Oh J, Yun S, Yoon Y (2013) Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. J Hazard Mater 263:702–710. doi:10.1016/j.jhazmat.2013.10.033

    Article  CAS  Google Scholar 

  • Jung C, Boateng L, Flora J, Oh J, Braswell M, Son A, Yoon Y (2015) Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: experimental and molecular modeling study. Chem Eng J 264:1–9. doi:10.1016/j.cej.2014.11.076

    Article  CAS  Google Scholar 

  • Khawla B, Sameh M, Imen G, Donyes F, Dhouha G, Raoudha E, Oumèma N (2014) Potato peel as feedstock for bioethanol production: a comparison of acidic and enzymatic hydrolysis. Ind Crops Prod 52:144–149. doi:10.1016/j.indcrop.2013.10.025

    Article  CAS  Google Scholar 

  • Kincl M, Meleh M, Veber M, Vrečerd F (2004) Study of the physicochemical parameters affecting the release of diclofenac sodium from lipophilic matrix tablets. Acta Chim Sloven 51(3):409–425

    CAS  Google Scholar 

  • Kyzas G, Deliyanni E (2015) Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents. Chem Eng Res Des 97:135–144. doi:10.1016/j.cherd.2014.08.020

    Article  CAS  Google Scholar 

  • Liang S, McDonald A (2012) Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J Agric Food Chem 62:8421–8429. doi:10.1021/jf5019406

    Article  Google Scholar 

  • Limousin G, Gaudet J-P, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modelling and measurement. Appl Geochem 22:249–275. doi:10.1016/j.apgeochem.2006.09.010

    Article  CAS  Google Scholar 

  • Luo Y, Guo W, Ngo H, Nghiem L, Hai F, Zhang J, Liang S, Wang X (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641. doi:10.1016/j.scitotenv.2013.12.065

    Article  Google Scholar 

  • Meloun M, Bordovská S, Galla L (2007) The thermodynamic dissociation constants of four non-steroidal anti-inflammatory drugs by the least-squares nonlinear regression of multiwavelength spectrophotometric pH-titration data. J Pharm Biomed Anal 45:552–564. doi:10.1016/j.jpba.2007.07.029

    Article  CAS  Google Scholar 

  • Mestre A, Pires J, Nogueira J, Carvalho A (2007) Activated carbons for the adsorption of ibuprofen. Carbon 45:1979–1988. doi:10.1016/j.carbon.2007.06.005

    Article  CAS  Google Scholar 

  • Mestre A, Pires R, Aroso I, Fernandes E, Pinto M, Reis R, Andrade M, Pires J, Silva S, Carvalho A (2014) Activated carbons prepared from industrial pre-treated cork: sustainable adsorbents for pharmaceutical compounds removal. Chem Eng J 253:408–417. doi:10.1016/j.cej.2014.05.051

    Article  CAS  Google Scholar 

  • Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42:83–94. doi:10.1016/j.carbon.2003.09.022

    Article  CAS  Google Scholar 

  • Moreno-Piraján J, Giraldo L (2011) Activated carbon obtained by pyrolysis of potato peel for the removal of heavy metal copper (II) from aqueous solutions. J Anal Appl Pyrolysis 90:42–47. doi:10.1016/j.jaap.2010.10.004

    Article  Google Scholar 

  • Moreno-Piraján J, Giraldo L (2012) Immersion calorimetry applied to the study of the adsorption of phenolic derivatives onto activated carbon obtained by pyrolysis of potato peel. Mater Express 2:121–129. doi:10.1166/mex.2012.1057

    Article  Google Scholar 

  • Önal E, Uzun B, Pütün A (2011) Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process Technol 92:879–885. doi:10.1016/j.fuproc.2010.12.006

    Article  Google Scholar 

  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García M, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287. doi:10.1016/j.chemosphere.2013.07.059

    Article  CAS  Google Scholar 

  • Rodriguez-Reinoso F, Martin-Martinez J, Prado-Burguete C, McEnaney B (1987) A standard adsorption isotherm for the characterization of activated carbons. J Phys Chem 91:515–516. doi:10.1021/j100287a006

    Article  CAS  Google Scholar 

  • Rovani S, Censi M, Pedrotti S Jr, Lima É, Cataluña R, Fernandes A (2014) Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal. J Hazard Mater 271:311–320. doi:10.1016/j.jhazmat.2014.02.004

    Article  CAS  Google Scholar 

  • Ruiz B, Cabrita I, Mestre A, Parra J, Pires J, Carvalho A, Ania C (2010) Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution. Appl Surf Sci 256:5171–5175. doi:10.1016/j.apsusc.2009.12.086

    Article  CAS  Google Scholar 

  • Saucier C, Adebayo M, Lima E, Cataluña R, Thue P, Prola L, Puchana-Rosero M, Machado F, Pavan F, Dotto G (2015) Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. J Hazard Mater 289:18–27. doi:10.1016/j.jhazmat.2015.02.026

    Article  CAS  Google Scholar 

  • Thommes M, Kaneko K, Neimark A, Oliver J, Rodriguez-Reinoso F, Rouquerol J, Sing K (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. doi:10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  • Torrellas S, Lovera R, Escalona N, Sepúlveda C, Sotelo J, García J (2015) Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Chem Eng J 279:788–798. doi:10.1016/j.cej.2015.05.104

    Article  CAS  Google Scholar 

  • Vasquez M, Lambrianides A, Schneider M, Kümmerer K, Fatta-Kassinos D (2014) Environmental side effects of pharmaceutical cocktails: what we know and what we should know. J Hazard Mater 279:169–189. doi:10.1016/j.jhazmat.2014.06.069

    Article  CAS  Google Scholar 

  • Vieno N, Sillanpää M (2014) Fate of diclofenac in municipal wastewater treatment plant—a review. Environ Int 69:28–39. doi:10.1016/j.envint.2014.03.021

    Article  CAS  Google Scholar 

  • White P, Bradshaw J, Dale M, Ramsay G, Hammond J, Broadley M (2009) Relationships between yield and mineral concentrations in potato tubers. HortScience 44:6–11

    Google Scholar 

  • Yahya M, Al-Qodah Z, Ngah C (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sustain Energ Rev 46:218–223. doi:10.1016/j.rser.2015.02.051

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee D, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi:10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Saluste A, Tomingas M, Menert A, Loorits L, Lemmiksoo V, Tenno T (2012a) Achieving nitritation and anammox enrichment in a single moving-bed biofilm reactor treating reject water. Environ Technol 33:703–710. doi:10.1080/09593330.2011.588962

    Article  CAS  Google Scholar 

  • Zekker I, Kroon K, Rikmann E, Tenno T, Tomingas M, Vabamäe P, Vlaeminck S, Tenno T (2012b) Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor. Biodegradation 23:739–749. doi:10.1007/s10532-012-9549-6

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Lemmiksoo V, Menert A, Loorits L, Vabamäe P, Tomingas M, Tenno T (2012c) Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR). Biodegradation 23:547–560. doi:10.1007/s10532-011-9532-7

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Seiman A, Loorits L, Kroon K, Tomingas M, Vabamäe P, Tenno T (2014) Nitritating-anammox biomass tolerant to high dissolved oxygen concentration and C/N ratio in treatment of yeast factory wastewater. Environ Technol 35(12):1565–1576. doi:10.1080/09593330.2013.874492

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Kroon K, Seiman A, Loorits L, Fritze H, Tuomivirta T, Vabamäe P, Raudkivi M, Mandel A, Tenno T (2015) Start-up of low-temperature anammox in UASB from mesophilic yeast factory anaerobic tank inoculum. Environ Technol 36(2):214–225. doi:10.1080/09593330.2014.941946

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Mandel A, Kroon K, Seiman A, Mihkelson J, Tenno T, Tenno T (2016) Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9°C in short-term anammox biofilm tests. Environ Technol. doi:10.1080/09593330.2015.1135995

    Google Scholar 

  • Zhang Y, Geißen S, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161. doi:10.1016/j.chemosphere.2008.07.086

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Portuguese Foundation for Science and Technology (FCT) for the financial support with the Post-Doc grants SFRH/BPD/93407/2013 and SFRH/BPD/84542/2012, respectively. The authors also thank FCT for the financial support to CQB and LAQV/REQUIMTE through the projects UID/MULTI/00612/2013 and UID/QUI/50006/2013, respectively. The authors thank Quimitejo for providing carbon CP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bernardo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardo, M., Rodrigues, S., Lapa, N. et al. High efficacy on diclofenac removal by activated carbon produced from potato peel waste. Int. J. Environ. Sci. Technol. 13, 1989–2000 (2016). https://doi.org/10.1007/s13762-016-1030-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1030-3

Keywords

Navigation