Skip to main content

Advertisement

Log in

Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Biochar has excellent solute adsorption capacity, yet few studies have investigated its application as a nutrient carrier in the development of slow-release fertilizers. The current study developed a biochar-based N–P–K fertilizer (BSRF) and evaluated its nutrient release patterns relative to a conventional fertilizer. SEM and EDX analyses confirmed the coarse and highly porous microstructure of the biochar (SBC) that enabled it to effectively sorb NO3 , PO4 3−, and K+ and form a nutrient-impregnated BSRF. BSRF had lower NO3 , PO4 3−, and K+ release than the conventional chemical fertilizer, demonstrating its low release behavior. BSRF-amended sandy soil had higher water retention capacity than that amended with a conventional chemical fertilizer. BSRF has potential to reduce nutrient leaching, improve water retention, and hence increase crop nutrient and water use efficiencies. Future research should focus on understanding nutrient release mechanisms, synchronization of nutrient release with plant uptake, and applications of the BSRF in environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (American Public Health Association) (1989) Standard methods for the examination of water and wastewater, 17th edn. APHA, Washington DC

    Google Scholar 

  • Ball BC, McTaggart IP, Scott A (2004) Mitigation of greenhouse gas emissions from soil under silage production by use of organic manures or slow-release fertilizer. Soil Use Manag 20(5):287–295

    Article  Google Scholar 

  • Basso AS, Miguez FE, Laird DA, Horton R, Westgate M (2013) Assessing potential of biochar for increasing water holding capacity of sandy soils. GCB Bioenergy 5:132–143. doi:10.1111/gcbb.12026

    Article  CAS  Google Scholar 

  • Becker BR, de Souza ES, Martins RL, Bueno JL (2016) Bioremediation of oil-contaminated beach and restinga sediments using a slow-release fertilizer. CLEAN- Air Soil Water. doi:10.1002/clen.201500023

    Google Scholar 

  • Berber-Mendoza MS, Leyva-Ramos R, Cerino-Cordoba FJ, Mendoza-Barron J, Garcia HJA, Flores-Cano JV (2013) Role of carboxylic sites in the adsorption of nickel (II) and zinc (II) onto plain and oxidized activated carbon fibers. Water Air Soil Pollut 224(7):1–12

    Article  CAS  Google Scholar 

  • Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B, Driver LE, Panzacchi P, Zygourakis K, Davies CA (2014) New approaches to measuring biochar density and porosity. Biomass Bioenerg 66:176–185

    Article  CAS  Google Scholar 

  • Broschat TK, Moore KK (2007) Release rates of ammonium–nitrogen, nitrate–nitrogen, phosphorus, potassium, magnesium, iron, and manganese from seven controlled-release fertilizers. Commun Soil Sci Plant Anal 38(7–8):843–850

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and Atrazine. Environ Sci Technol 43:3285–3291

    Article  CAS  Google Scholar 

  • Cinelli P, Chiellini E, Gordon SH, Imam SH (2003) Characteristics and degradation of hybrid composite films prepared from PVA, starch and lignocellulosics. Macromol Symp 197(1):143–156

    Article  CAS  Google Scholar 

  • Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293. doi:10.3390/agronomy3020275

    Article  CAS  Google Scholar 

  • Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis 95:960–966

    Article  Google Scholar 

  • Fryda L, Visser R (2015) Biochar for soil improvement: evaluation of biochar from gasification and slow pyrolysis. Agriculture 5(4):1076–1115. doi:10.3390/agriculture5041076

    Article  Google Scholar 

  • Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633

    Article  CAS  Google Scholar 

  • Ghezzehei TA, Sarkhot DV, Berhe AA (2014) Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties. Solid Earth 5:953–962

    Article  Google Scholar 

  • Guan Y, Song C, Gan Y, Li FM (2014) Increased maize yield using slow-release attapulgite-coated fertilizers. Agron Sustain Dev 34:657–665. doi:10.1007/s13593-013-0193-2

    Article  CAS  Google Scholar 

  • Gwenzi W, Musarurwa T, Nyamugafata P, Chaukura N, Chaparadza A, Mbera S (2014) Adsorption of Zn2+ and Ni2+ in a binary aqueous solution by biosorbants derived from sawdust and water hyacinth (Eichhornia crassipes). Water Sci Technol 70:1419–1427

    Article  CAS  Google Scholar 

  • Gwenzi W, Chaukura N, Mukome F, Machado S, Nyamasoka B (2015) Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks and uncertainties. J Environ Manag 150:250–261

    Article  CAS  Google Scholar 

  • Haase DL, Rose R, Trobaugh J (2006) Field performance of three stock sizes of Douglas-fir container seedlings grown with slow-release fertilizer in the nursery growing medium. New For 31:1–24

    Article  Google Scholar 

  • Han X, Chen S, Hu X (2009) Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination 240:21–26

    Article  CAS  Google Scholar 

  • Kakade SM, Mannur VS, Kardi RV, Ramani KB, Dhada AA (2010) Evaluation of orally disintegrating tablets of sertraline. Int J Pharm Res Dev 1–7

  • Khan MA, Kim K-W, Mingzhi W, Lim B-K, Lee W-H, Lee J-Y (2008) Nutrient-impregnated charcoal: an environmentally friendly slow-release fertilizer. Environmentalist 28:231–235

    Article  Google Scholar 

  • LeBeau JM, Boonyongmaneerat Y (2007) Comparison study of aqueous binder systems for slurry-based processing. Mater Sci Eng A 458(1):17–24

    Article  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’neill B, Skjemstad JO, Thies J, Luizao FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730

    Article  CAS  Google Scholar 

  • McKenzie RH, Bremer E, Middleton AB, Pfiffner PG, Dowbenko RE (2007) Controlled-release urea for winter wheat in southern Alberta. Can J Soil Sci 87(1):85–91

    Article  CAS  Google Scholar 

  • Mukerabigwi JF, Wang W, Ma X, Liu M, Lei S, Wei H, Huang X, Cao Y (2015) Urea fertilizer coated with biodegradable polymers and diatomite for slow release and water retention. J Coat Technol Res 12(6):1085–1094

    Article  CAS  Google Scholar 

  • Mukherjee A, Lal R, Zimmerman AR (2014) Impacts of biochar and other amendments on soil-carbon and nitrogen stability: a laboratory column study. Soil Sci Soc Am J 78(4):1258–1266. doi:10.2136/sssaj2014.01.0025

    Article  Google Scholar 

  • Murphy T, Riley JP (1962) A Modified single solution method for the determination of phosphate in natural water. Anal Chim Acta 27:21–26

    Article  Google Scholar 

  • Nyamangara J, Mugwira LM, Mpofu SE (2000) Soil fertility status in the communal areas of Zimbabwe in relation to sustainable crop production. J Sustain Agric 16(2):15–29

    Article  Google Scholar 

  • Nyamapfene KW (1991) Soils of Zimbabwe. Nehanda Publishers (Pvt) Ltd, Harare

    Google Scholar 

  • Rivera-Utrilla J, Sanchez-Polo J (2003) Adsorption of Cr(III) on ozonized activated carbon: importance of Cπ–cation interactions. Water Res 37:3335–3340

    Article  CAS  Google Scholar 

  • Rutland DW (1986) Manual for determining physical properties of fertilizer. International Fertilizer Development Centre (IFDC), Muscle Shoals

    Google Scholar 

  • Shaviv A (2000) Advances in controlled release of fertilizers. Adv Agron 71:1–49

    Google Scholar 

  • Steiner C, Glaser B, Teixeira W, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  Google Scholar 

  • Trenkel ME (2010) Slow- and controlled-release and stabilized fertilizers: an option for enhancing nutrient efficiency in agriculture, 2nd edn. International Fertilizer Association (IFA), Paris

    Google Scholar 

  • Ulyett J, Sakrabani R, Kibblewhite M, Hann M (2014) Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. Eur J Soil Sci 65:96–104. doi:10.1111/ejss.12081

    Article  CAS  Google Scholar 

  • Wang FL, Alva AK (1996) Leaching of nitrogen from slow-release urea sources in sandy soils. Soil Sci Soc Am J 60:1454–1458

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Wu H, Che X, Ding Z, Hu X, Creamer AE, Chen H, Gao B (2016) Release of soluble elements from biochars derived from various biomass feedstocks. Environ Sci Pollut R 23:1905–1915

    Article  CAS  Google Scholar 

  • Xu R, Obbard JP, Tay ETC (2003) Optimization of slow-release fertilizer dosage for bioremediation of oil-contaminated beach sediment in a tropical environment. World J Microbiol Biotechnol 19(7):719–725

    Article  CAS  Google Scholar 

  • Xu R, Lau AN, Lim YG, Obbard JP (2005) Bioremediation of oil-contaminated sediments on an intertidal shoreline using a slow-release fertilizer and chitosan. Mar Pollut Bull 51:1062–1070

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011a) Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 102:6273–6278

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011b) Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J Hazard Mater 190:501–507

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Chen J, Yang L (2013) Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol 47:8700–8708

    Article  CAS  Google Scholar 

  • Yetilmezsoy K, Sapci-Zengin Z (2009) Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J Hazard Mater 166:260–269

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J 255:107–113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The pyrolysis system used for the production of biochar used in the current study funded by the International Foundation for Science—IFS, Sweden [Grant Number C/5266-2]. However, IFS played no role whatsoever in experimental design, data interpretation, write up and decision to submit the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gwenzi.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwenzi, W., Nyambishi, T.J., Chaukura, N. et al. Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer. Int. J. Environ. Sci. Technol. 15, 405–414 (2018). https://doi.org/10.1007/s13762-017-1399-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1399-7

Keywords

Navigation