Skip to main content

Advertisement

Log in

A review on the application of different treatment processes for emulsified oily wastewater

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Oily wastewater, one of the major threats to environment nowadays, mainly originates from petrochemical, heavy metal, food processing, paint, automobile industrial premises. This oil contaminated wastewater is mutagenic and carcinogenic to human health as well as inhibitory to plant growth. Without any proper treatment if such oily water stream disposed into water bodies, apart from increasing the BOD and COD, it also imparts a sunlight impervious layer at the top of the stream restricting the entrance of sunlight followed by disruption of aquatic ecosystem. Hence proper treatment of oily wastewater before its discharge to environment is one of the primary concerns. Researchers have used several technologies such as, gravity sedimentation, coagulation, flotation, coagulation composite flotation, demulsification, membrane separation, flocculation, chemical precipitation and bioremediation have been explored to purify this oil contaminated wastewater to a desired level. Especially, the uniqueness of the treatment will require a through merit analysis of the process, when the wastewater comprises of oil–water emulsion. Hence, in this review an analytical insight on the merits of the process for the treatment of such emulsified system has been provided. The review article also discusses different microorganisms that are required for bioremediation of either oil spill over a large aquatic zone or oil–water emulsion at source point. Finally, the manuscript highlighted some of the effluent treatment plants’ operational process from different industries, which might provide a typical understanding of a comparative view between different treatment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(reprinted after permission from El-Naas et al. 2014)

Fig. 2

Similar content being viewed by others

References

  • Aguilera F, Méndez J, Pásaro E, Laffon B (2010) Review on the effects of exposure to spilled oils on human health. J Appl Toxicol 30(4):291–301

    CAS  Google Scholar 

  • Ahmad AL, Bhatia S, Ibrahim N, Sumathi S (2005) Adsorption of residual oil from palm oil mill effluent using rubber powder. Braz J Chem Eng 22(3):371–379

    Article  CAS  Google Scholar 

  • Al-Majed AA, Al-Majed AR, Hossain ME (2012) A sustainable approach to controlling oil spills. J Environ Manage 113:213–227

    Article  Google Scholar 

  • Amat-Bronnert APLA, Castegnaro M (2007) Genotoxic activity and induction of biotransformation enzymes in two human cell lines after treatment by Erika fuel extract. Environ Toxicol Pharmacol 23(1):89–95

    Article  CAS  Google Scholar 

  • Anwar S, Nabeela A, Sundarrajan S, Abdulrahim S, Nizar S, Balamurugan R, Ramakrishna S (2013) Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membranes 3:266–284

    Article  CAS  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715

    Article  CAS  Google Scholar 

  • Balamurugan R, Sundarrajan S, Ramakrishna S (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes 1:232–248

    Article  CAS  Google Scholar 

  • Barhate R, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Memb Sci 296(1–2):1–8

    Article  CAS  Google Scholar 

  • Camilli R, Reddy CM, Yoerger DR, Van Mooy BAS, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at deepwater horizon. Science 330:201–204

    Article  CAS  Google Scholar 

  • Champion KM, Zengler K, Rabus R (1999) Anaerobic degradation of ethylbenzene and toluene in denitrifying strain EbN1 proceeds via independent substrate-induced pathways. J Mol Microbiol Biotechnol 1:157–164

    CAS  Google Scholar 

  • Chapman H, Purnell K, Law RJ, Kirby MF (2007) The use of chemical dispersants to combat oil spills at sea: a review of practice and research needs in Europe. Mar Pollut Bull 54:827–838

    Article  CAS  Google Scholar 

  • Daaou M, Bendedouch D (2012) Water pH and surfactant addition effects on the stability of an Algerian crude oil emulsion. J Saudi Chem Soc King Saud Univ 16(3):333–337

    Article  CAS  Google Scholar 

  • Dada E, Akinola M, Haruna R (2018) Physico-chemical and genotoxicity assessments of palm oil mill effluent generated by a corporate refinery in Nigeria. Pollution 4(1):83–92

    CAS  Google Scholar 

  • Daugulis AJ, McCracken CM (2003) Microbial degradation of high and low molecular weight polyaromatic hydrocarbons in a two-phase partitioning bioreactor by two strains of Sphingomonas sp. Biotechnol Lett 25(17):1441–1444

    Article  CAS  Google Scholar 

  • Del Colle R, Longo E, Fontes SR (2007) Demulsification of water/sunflower oil emulsions by a tangential filtration process using chemically impregnated ceramic tubes. J Memb Sci 289(1–2):58–66

    Article  CAS  Google Scholar 

  • Duke NC, Burns KA, Swannell RPJ, Dalhaus O, Rupp RJ (2000) Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves: the gladstone field trials. Mar Pollut Bull 41(7–12):403–412

    Article  CAS  Google Scholar 

  • El-Naas MH, Alhaija MA, Al-Zuhair S (2014) Evaluation of a three-step process for the treatment of petroleum refinery wastewater. J Environ Chem Eng 2(1):56–62

    Article  CAS  Google Scholar 

  • Etkin DS (1999) Oil spill dispersants: from technology to policy. Cutter Information Corp, Arlington

    Google Scholar 

  • Faibish RS, Cohen Y (2001) Fouling and rejection behavior of ceramic and polymer-modified ceramic membranes for ultrafiltration of oil-in-water emulsions and microemulsions. Colloids Surf A 191:27–40

    Article  CAS  Google Scholar 

  • Faria NT, Santos MV, Fernandes P, Fonseca LL, Fonseca C, Ferreira FC (2014) Production of glycolipid biosurfactants, mannosylerythritol lipids, from pentoses and d-glucose/d-xylose mixtures by Pseudozyma yeast strains. Process Biochem 49(11):1790–1799

    Article  CAS  Google Scholar 

  • Fingas M (2001) The basics of oil spill cleanup. Lewis Publishers, Boca Raton, pp 120–125. ISBN 1-56670-537-1

    Google Scholar 

  • Goldblatt AME, Gucciardi JM, Huban CM, Vasconcellos SR, Liao WP (2014) New polyelectrolyte emulsion breaker improves oily wastewater cleanup at lower usage rates. GE Power & Water—Water & Process Technologies, pp 1–6

  • Ha M, Kwon H, Cheong HK, Lim S, Yoo SJ, Kim EJ, Park SG, Lee J, Chung BC (2012) Urinary metabolites before and after cleanup and subjective symptoms in volunteer participants in cleanup of the Hebei Spirit oil spill. Sci Total Environ 429:167–173

    Article  CAS  Google Scholar 

  • Habibollahi H, Salehzadeh A (2018) Isolation, optimization, and molecular characterization of a lipase producing bacterium from oil contaminated soils. Pollution 4(1):119–128

    CAS  Google Scholar 

  • Hassan MA, Yeom BY, Wilkie A, Pourdeyhimi B, Khan SA (2013) Fabrication of nanofiber meltblown membranes and their filtration properties. J Memb Sci 427:336–344

    Article  CAS  Google Scholar 

  • Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S (2013) Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeterior Biodegradation 81:28–34

    Article  CAS  Google Scholar 

  • Imandi S, Bandaru V, Somalanka S, Garapati H (2007) Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design. Enzyme Microb Technol 40:1367–1372

    Article  CAS  Google Scholar 

  • Ito T, Tanaka M, Shinkawa H, Nakada T, Ano Y, Kurano N, Tomita M (2013) Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics 9(Suppl 1):178–187

    Article  CAS  Google Scholar 

  • Jagmann N, Brachvogel HP, Philipp B (2010) Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila. Environ Microbiol 12(6):1787–1802

    Article  CAS  Google Scholar 

  • Kajitvichyanukul P, Hung YT, Wang L (2011) Membrane technologies for oil–water separation. In: Wang L, Chen J, Hung YT, Shammas N (eds) Membrane and desalination technologies. Humana Press, New York, pp 639–668

    Chapter  Google Scholar 

  • Khamforoush M, Pirouzram O, Hatami T (2015) The evaluation of thin film composite membrane composed of an electrospun polyacrylonitrile nanofibrous mid-layer for separating oil–water mixture. Desalination 359:14–21

    Article  CAS  Google Scholar 

  • Kleindienst S, Paul JH, Joye SB (2015) Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nat Rev Microbiol 13:388–396

    Article  CAS  Google Scholar 

  • Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A (2012) Hygro-responsive membranes for effective oil–water separation. Nat Commun 3(1025):1–8

    Google Scholar 

  • Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC (2011) Fate of dispersants associated with the deepwater horizon oil spill. Environ Sci Technol 45:1298–1306

    Article  CAS  Google Scholar 

  • Lam SS, Russell AD, Lee CL, Chase HA (2012) Microwave-heated pyrolysis of waste automotive engine oil: influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil. Fuel 92(1):327–339

    Article  CAS  Google Scholar 

  • Lessard RR, Demarco G (2000) The significance of oil spill dispersants. Spill Sci Technol Bull 6(1):59–68

    Article  CAS  Google Scholar 

  • Lima JF, Vilar EO (2014) The use of ultrasound to reduce cathodic incrustation. Ultrason Sonochem 21(3):963–969

    Article  CAS  Google Scholar 

  • Liu P, Li C, Zhao Z, Lu G, Cui H, Zhang W (2014) Induced effects of advanced oxidation processes. Sci Rep 4:1–4

    Google Scholar 

  • Maedeh PA, Nasrabadi T, Wu W, Al Dianty M (2017) Evaluation of oil pollution dispersion in an unsaturated sandy soil environment. Pollution 3(4):701–711

    Google Scholar 

  • Mag TK, Green DH, Kwong AT (1983) Continuous acidulation of soapstock and recovery of acid oil. J Am Oil Chem Soc 60(5):1008–1011

    Article  CAS  Google Scholar 

  • Mcdermott GN (1976) Liquid waste treatment in the vegetable oil processing industry—U.S. practices. Chem Technol Fuels Oils 53:449–458

    Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:2–19

    Article  Google Scholar 

  • McKew BA, CoulonF YM, Denaro R, Genovese M, Smith CJ, McGenity TJ (2007) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ Microbiol 9(6):1562–1571

    Article  CAS  Google Scholar 

  • Moatar F, Shadizadeh SR, Karbassi AR, Ardalani E, Derakhshi RA, Asadi M (2010) Determination of naturally occurring radioactive materials (NORM) in formation water during oil exploration. J Radioanal Nucl Chem 283(1):3–7

    Article  CAS  Google Scholar 

  • Munter R (2001) Advanced oxidation processes—current status and prospects. Proc Est Acad Sci, Chem 50(2):59–80

    CAS  Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2010) Biostimulation strategies for enhanced bioremediation of marine oil spills including chronic pollution. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology, SE-187. Springer, Berlin, pp 2521–2529

    Chapter  Google Scholar 

  • Njoku KL (2017) Responses of accessions of Zea mays to crude oil pollution using growth indices and enzyme activities as markers. Pollution 4(1):183–193

    Google Scholar 

  • Overholt WA, Green SJ, Marks KP, Venkatraman R, Prakash O, Kostka E (2013) Draft genome sequences for oil-degrading bacterial strains from beach sands impacted by the deepwater horizon oil spill. Genome Announc 1(6):1–2

    Article  Google Scholar 

  • Pal S, Banat F, Almansoori A, Haija MA (2016) Review of technologies for biotreatment of refinery wastewaters: progress, challenges and future opportunities. Environ Technol Rev 5(1):12–38

    Article  CAS  Google Scholar 

  • Paustenbach DJ (2002) The U.S. EPA science advisory board evaluation (2001) of the EPA dioxin reassessment. Regul Toxicol Pharmacol 36:211–219

    Article  CAS  Google Scholar 

  • Popp N, Schlömann M, Mau M (2006) Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology 152:3291–3304

    Article  CAS  Google Scholar 

  • Priambodo R, Shih Y, Huang Y, Huang Y (2011) Treatment of real wastewater using semi batch (photo)-electro-fenton method. Sustain Environ Res 21(6):389–393

    CAS  Google Scholar 

  • Qbayori OS, Salam LB, Ogunwumi OS (2014) Biodegradation of fresh and used engine oils by Pseudomonas aeruginosa LP5. J Bioremediat Biodegrad 5(1):1–7

    Google Scholar 

  • Qiao N, Shao Z (2010) Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J Appl Microbiol 108(4):1207–1216

    Article  CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90(2):159–168

    Article  CAS  Google Scholar 

  • Rashtchi R, Karbassi AR, Mozafari H, Moradpour Tayebi E (2013) Investigation of polluting industries and oil waste reception facility in Khark Island in Persian Gulf. Tech J Eng Appl Sci 3(14):1346–1349

    Google Scholar 

  • Raza A, Ding B, Zainab G, El-Newwhy M, Al-Deyab SS, Yu J (2014) In situ cross-linked superwetting nanofibrous membranes for ultrafast oil/water separation. J Mater Chem A 2:10137–10145

    Article  CAS  Google Scholar 

  • Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci USA 109(50):20292–20297

    Article  CAS  Google Scholar 

  • Rincón GJ, La Motta EJ (2014) Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation. J Environ Manage 144:42–50

    Article  CAS  Google Scholar 

  • Russell S, Chase A (2011) From waste to valuable fuel: how microwave-heated pyrolysis can recycle waste automotive engine oil. Prepr Pap Am Chem Soc Div Fuel Chem 56(1):19–21

    Google Scholar 

  • Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006) Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol 188(11):3763–3773

    Article  CAS  Google Scholar 

  • Salahi A, Badrnezhad R, Abbasi M, Mohammadi T, Rekabdar F (2011) Oily wastewater treatment using a hybrid UF/RO system. Desalin Water Treat 28(1–3):75–82

    Article  CAS  Google Scholar 

  • Schneiker S, Martins dos Santos VP, Bartels D, Bekel T, Brecht M, Buhrmester J, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24(8):997–1004

    Article  CAS  Google Scholar 

  • Sealock LJ, Baker EG, Elliott DC (1991) Treatment method for emulsified petroleum wastes, WO1991003041

  • Singh H, Lal N (2010) Environment audit—an effective tool in improving the effluent quality—a case study. In: Petrotech-2010 m New Delhi, India, pp 1–7

  • Sivakumar G, Xu J, Thompson RW, Yang Y, Randol-Smith P, Weathers PJ (2012) Integrated green algal technology for bioremediation and biofuel. Bioresour Technol 107:1–9

    Article  CAS  Google Scholar 

  • Srinivasan A, Viraraghavan T (2010) Oil removal from water using biomaterials. Bioresour Technol 101:6594–6600

    Article  CAS  Google Scholar 

  • Swannell RPJ, Daniel F (1999) Effect of dispersants on oil biodegradation under simulated marine conditions. In: Proceedings of the 1999 international oil spill conference, Washington, US, pp 169–176

  • Tchobanoglous G, Burton FL (1991) Wastewater engineering: treatment, disposal, and reuse. McGraw-Hill, New York

    Google Scholar 

  • Tony M, Zhao Y, Purcell P, El-Sheriny M (2009) Evaluating the photo-catalytic application of Fenton’s reagent augmented with TiO2 and ZnO for the mineralization of an oil–water emulsion. J Environ Sci Heal Part A 44:488–493

    Article  CAS  Google Scholar 

  • Viswanadam G, Chase GG (2013) Water–diesel secondary dispersion separation using superhydrophobic tubes of nanofibers. Sep Purif Technol 104:81–88

    Article  CAS  Google Scholar 

  • Viter R, Katoch A, Kim SS (2013) Grain size dependent bandgap shift of SnO2 nanofibers. Met Mater Int 20(1):163–167

    Article  CAS  Google Scholar 

  • Wahi R, Chuah LA, Choong TSY, Ngaini Z, Nourouzi MM (2013) Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep Purif Technol 11:51–63

    Article  CAS  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham W, Lunsdorf H, Timmis KN (1998) Alcanivorax borkurnensis gen. now, sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    Article  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18(3):257–266

    Article  CAS  Google Scholar 

  • Yang CL (2007) Electrochemical coagulation for oily water demulsification. Sep Purif Technol 54(2007):388–395

    Article  CAS  Google Scholar 

  • Yi XS, Yu SL, Shi WX, Sun N, Jin LM, Wang S, Sun LP (2011) The influence of important factors on ultrafiltration of oil/water emulsion using PVDF membrane modified by nano-sized TiO2/Al2O3. Desalination 281:179–184

    Article  CAS  Google Scholar 

  • Zhou YB, Tang XY, Hu XM, Fritschi S, Lu J (2008) Emulsified oily wastewater treatment using a hybrid-modified resin and activated carbon system. Sep Purif Technol 63(2):400–406

    Article  CAS  Google Scholar 

  • Zhou J, Chang Q, Wang Y, Wang J, Meng G (2010) Separation of stable oil–water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane. Sep Purif Technol 75(3):243–248

    Article  CAS  Google Scholar 

  • Zhuannian L, Yongmei L, Liang C, Xiaogang H (2011) Treatment of emulsion wastewater by demulsification-fenton oxidation-coagulation. In: 2011 fourth international conference on intelligent computation technology and automation, pp 918–921. IEEE

  • Zimmer T, Ohkuma M, Ohta A, Takagi M, Schunck WH (1996) The CYP52 multigene family of Candida maltosa encodes functionally diverse n-alkane-inducible cytochromes p450. Biochem Biophys Res Commun 224(3):784–789

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge UGC sponsored INCP-2014/10060 titled “Research and education within advanced hybrid separation techniques in industrial wastewater treatment” for sponsoring the funding of this research work. The scholarship (SRF-Direct) from Council of Scientific and Industrial Research (File No. 09/096(778)/2013-EMR-J and 09/096(0879)/2017-EMR-I) along with DST (Vide Sanction Letter No. DST/TSG/AMT/2015/276 dated 11.06.2016) is also acknowledged for extending financial support to the task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putatunda, S., Bhattacharya, S., Sen, D. et al. A review on the application of different treatment processes for emulsified oily wastewater. Int. J. Environ. Sci. Technol. 16, 2525–2536 (2019). https://doi.org/10.1007/s13762-018-2055-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-2055-6

Keywords

Navigation