Skip to main content
Log in

Modeling of a passive scalar transport from thermal power plants to atmospheric boundary layer

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

At the moment, there is a tendency to increasing the number of thermal power plants (TPPs); this trend can be associated with industrial development and energy consumption growth. This paper discusses the numerical simulation of the pollution movement from activities of the TPP and the study of the pollution concentration level at various distances from the emission source in actual atmospheric conditions. The approbation of the numerical algorithm and the mathematical model was performed using 2D and 3D test problems. The obtained computational values were compared with measured values and computational values of other authors. In addition, the distribution of pollution in the 3D case was investigated on an actual physical size. The Ekibastuz TPP-1 coal-fired power plant was taken as a real example. A distinctive feature of this TPP is that pollution is emitted from two chimneys of different heights (\(H_{H} = 330\) and \(H_{L} = 300\) m). The obtained values illustrated that, due to the difference between the height of the chimney (\(H_{H} - H_{L} = 30\) m), the pollution concentration from the higher chimney (\(H_{H} = 330\) m) was fell down far away from the emission source than from the lower chimney (\(H_{L} = 300\) m) (2160 and 1970 m, respectively). From the obtained data from computation, it can be argued that the construction of higher chimneys reduces the harmful effects of emissions on the environment. Also, the obtained results will help to predict the optimal and safe distance from cities or settlements during the construction of new thermal power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbaspour M, Javid AH, Moghimi P, Kayhan K (2005) Modeling of thermal pollution in coastal area and its economical and environmental assessment. Int J Environ Sci Tech 2(1):13–26

    Article  Google Scholar 

  • Acharya S, Tyagi M, Hoda A (2001) Flow and heat transfer predictions for film-cooling. Ann NY Acad Sci 934:110–125

    Article  CAS  Google Scholar 

  • Ajersch P, Zhou JM, Ketler S, Salcudean M, Gartshore IS (1995) Multiple jets in a crossflow: detailed measurements and numerical simulations. In: International gas turbine and aeroengine congress and exposition, ASME Paper 95-GT-9, Houston, TX, pp 1–16

  • Annual report. SAMRYK ENERGY (2015) https://www.samruk-energy.kz/en/shareholder/annual-reports

  • Barbero R, Cuadra D, Domingo J, Iranzo A, Gallego E (2015) Investigation of the near-range dispersion of particles unexpectedly released from a nuclear power plant using CFD. Environ Fluid Mech 15(1):67–83

    Article  Google Scholar 

  • Camussi R, Guj G, Stella A (2002) Experimental study of a jet in a crossflow at very low Reynolds number. J Fluid Mech 454:113–144

    Article  Google Scholar 

  • Chai X, Iyer PS, Mahesh K (2015) Numerical study of high speed jets in crossflow. J Fluid Mech 785:152–188

    Article  Google Scholar 

  • Chang C-H, Chan C-C, Cheng K-J, Lin J-S (2011) Computational fluid dynamics simulation of air exhaust dispersion from negative isolation wards of hospitals. Eng Appl Comput Fluid Mech 5(2):276–285. https://doi.org/10.1080/19942060.2011.11015370

    Article  Google Scholar 

  • Chochua G, Shyy W, Thakur S, Brankovic A, Lienau K, Porter L, Lischinsky D (2000) A computational and experimental investigation of turbulent jet and crossflow interaction. Numer Heat Transf A 38:557–572

    Article  CAS  Google Scholar 

  • Ebrahimi M, Jahangirian A (2013) New analytical formulations for calculation of dispersion parameters of Gaussian model using parallel CFD. Environ Fluid Mech 13(2):125–144

    Article  CAS  Google Scholar 

  • El-Sharkawi MA (2013) Electric energy—an introduction, 3rd edn. CRC Press, Boca Raton, p 53

    Google Scholar 

  • Environmental, Health, and Safety Guidelines for Thermal Power Plants. International Finance Corporation (2017). https://www.ifc.org/wps/wcm/connect/topics_ext_content/ifc_external_corporate_site/sustainability-atifc/policies-standards/ehs-guidelines

  • Falconi CJ, Denev JA, Frohlich J, Bockhorn H (2007) A test case for microreactor flows—a two-dimensional jet in crossflow with chemical reaction. Internal report. available at: http://www.ict.uni-karlsruhe.de/index.pl/themen/dns/index.html: “2d test case for microreactor flows. Internal report. 2007 July 20

  • Fatehifar E, Elkamel A, Alizadeh Osalu A, Charchi A (2008) Developing a new model for simulation of pollution dispersion from a network of stacks. Appl Math Comput 206:662–668

    Google Scholar 

  • Fay JA, Rosenzweig JJ (1980) An analytical diffusion model for long distance transport of air pollutants. Atmos Environ 14(3):355–365

    Article  CAS  Google Scholar 

  • Ferziger JH, Peric M (2013) Computational methods for fluid dynamics, 3rd edn. Springer, Berlin, p 426

    Google Scholar 

  • Gousseau P, Blocken B, Stathopoulos T, Van Heijst GJF (2011) CFD simulation of near-field pollutant dispersion on a high-resolution grid: a case study by LES and RANS for a building group in downtown Montreal. Atmos Environ 45(2):428–438

    Article  CAS  Google Scholar 

  • Grazia G, Sara F, Barbara A, Giorgio V, Alessandro B, Sergio T (2017) Impact assessment of pollutant emissions in the atmosphere from a power plant over a complex terrain and under unsteady winds. Sustainability 9:2076. https://doi.org/10.3390/su9112076

    Article  CAS  Google Scholar 

  • Hasselbrink EF, Mungal MG (2001) Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets. J Fluid Mech 443:1–25

    Article  Google Scholar 

  • Igbokwe JO, Azubuike JO, Nwufo OC, Okafor G, Ezurike BO, Opara UV (2016) Critical review and analysis of general pollutants associated with thermal power plants in nigeria and control techniques. Res Rev J Eng Technol 5(4):1–4

    CAS  Google Scholar 

  • Issakhov A (2014) Modeling of synthetic turbulence generation in boundary layer by using zonal RANS/LES method. Int J Nonlinear Sci Numer Simul 15(2):115–120. https://doi.org/10.1515/ijnsns-2012-0029

    Article  Google Scholar 

  • Issakhov A (2015a) Mathematical modeling of the discharged heat water effect on the aquatic environment from thermal power plant. Int J Nonlinear Sci Numer Simul 16(5):229–238. https://doi.org/10.1515/ijnsns-2015-0047

    Article  Google Scholar 

  • Issakhov A (2015b) Numerical modeling of the effect of discharged hot water on the aquatic environment from a thermal power plant. Int J Energy Clean Environ 16(1–4):23–28. https://doi.org/10.1615/InterJEnerCleanEnv.2016015438

    Article  Google Scholar 

  • Issakhov A (2016a) Mathematical modeling of the discharged heat water effect on the aquatic environment from thermal power plant under various operational capacities. Appl Math Model 40(2):1082–1096. https://doi.org/10.1016/j.apm.2015.06.024

    Article  Google Scholar 

  • Issakhov A (2016) Mathematical modelling of the thermal process in the aquatic environment with considering the hydrometeorological condition at the reservoir-cooler by using parallel technologies. In: Sustaining power resources through energy optimization and engineering, pp 1–494. https://doi.org/10.4018/978-1-4666-9755-3 Chapter 10, pp 227–243. https://doi.org/10.4018/978-1-4666-9755-3.ch010

  • Issakhov A (2017a) Numerical study of the discharged heat water effect on the aquatic environment from thermal power plant by using two water discharged pipes. Int J Nonlinear Sci Numer Simul 18(6):469–483. https://doi.org/10.1515/ijnsns-2016-0011

    Article  Google Scholar 

  • Issakhov A (2017) Numerical modelling of the thermal effects on the aquatic environment from the thermal power plant by using two water discharge pipes. In: AIP conference proceedings, vol 1863, p 560050. http://dx.doi.org/10.1063/1.4992733

  • Issakhov A, Mashenkova A (2019) Numerical study for the assessment of pollutant dispersion from a thermal power plant under the different temperature regimes. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02211-y

    Article  Google Scholar 

  • Issakhov A, Zhandaulet Y, Nogaeva A (2018) Numerical simulation of dam break flow for various forms of the obstacle by VOF method. Int J Multiph Flow 109:191–206

    Article  CAS  Google Scholar 

  • Issakhov A, Bulgakov R, Zhandaulet Y (2019) Numerical simulation of the dynamics of particle motion with different sizes. Eng Appl Comput Fluid Mech 13(1):1–25

    Google Scholar 

  • Keimasi MR, Taeibi-Rahni M (2001) Numerical simulation of jets in a crossflow using different turbulence models. AIAA J 39(12):2268

    Article  Google Scholar 

  • Kelso RM, Lim TT, Perry AE (1996) An experimental study of round jets in cross-flow. J Fluid Mech 306:111–144

    Article  CAS  Google Scholar 

  • Kho WLF, Sentian J, Radojevi M, Tan CL, Law PL, Halipah S (2007) Computer simulated versus observed NO2 and SO2 emitted from elevated point source complex. Int J Environ Sci Technol 4(2):215–222

    Article  CAS  Google Scholar 

  • Kozic MS (2015) A numerical study for the assessment of pollutant dispersion from Kostolac b power plant to Viminacium for different atmospheric conditions. Therm Sci 19(2):425–434

    Article  Google Scholar 

  • Livescu D, Jaberi FA, Madnia CK (2000) Passive-scalar wake behind a line source in grid turbulence. J Fluid Mech 416:117–149

    Article  CAS  Google Scholar 

  • Muppidi S, Mahesh K (2005) Study of trajectories of jets in crossflow using direct numerical simulations. J Fluid Mech 530:81–100

    Article  Google Scholar 

  • Muppidi S, Mahesh K (2007) Direct numerical simulation of round turbulent jets in crossflow. J Fluid Mech 574:59–84

    Article  Google Scholar 

  • Muppidi S, Mahesh K (2008) Direct numerical simulation of passive scalar transport in transverse jets. J Fluid Mech 598:335–360

    Article  Google Scholar 

  • Olaguer EP, Knipping E, Shaw S, Ravindran S (2016) Microscale air quality impacts of distributed power generation facilities. J Air Waste Manag Assoc. https://doi.org/10.1080/10962247.2016.1184194

    Article  Google Scholar 

  • Olivera A, Monterob G, Montenegrob R, Rodrguezb E, Escobarb JM, Perez-Fogueta A (2013) Adaptive finite element simulation of stack pollutant emissions over complex terrains. Exergy Int J 49:47–60

    Article  Google Scholar 

  • Saeed M, Yu J-Y, Abdalla AAA, Zhong X-P, Ghazanfar MA (2017) An assessment of k-e turbulence models for gas distribution analysis. Nucl Sci Tech 28:146. https://doi.org/10.1007/s41365-017-0304-x

    Article  Google Scholar 

  • Sanín N, Montero G (2007) A finite difference model for air pollution simulation. Adv Eng Softw 38:358–365

    Article  Google Scholar 

  • Schluter JU, Schonfeld T (2000) LES of jets in crossflow and its application to a gas turbine burner. Flow Turbul Combust 65:177–203

    Article  CAS  Google Scholar 

  • Schonauer W, Adolph T (2005) Results of the snuffle problem Denev by the FDEM Program, Abschlussbericht des Verbundprojekts FDEM, UniversitЁat Karlsruhe

  • Shan JW, Dimotakis PE (2006) Reynolds-number effects and anisotropy in transverse-jet mixing. J Fluid Mech 566:47–96

    Article  Google Scholar 

  • Su LK, Mungal MG (2004) Simultaneous measurement of scalar and velocity field evolution in turbulent crossflowing jets. J Fluid Mech 513:1–45

    Article  Google Scholar 

  • Toja-Silva F, Chen J, Hachinger S, Hase F (2017) CFD simulation of CO2 dispersion from urban thermal power plant: analysis of turbulent Schmidt number and comparison with Gaussian plume model and measurements. J Wind Eng Ind Aerodyn 169:177–193

    Article  Google Scholar 

  • Tomiyama H, Kobayashi S, Tanabe K, Chatani S, Takami A (2016) Temporal emission distribution corresponding to operating quantity in thermal power plant. J Jpn Soc Atmos Environ 51(2):124–131

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2016) Clean Air Markets Division: https://ampd.epa.gov/ampd/

  • Walvekar PP, Gurjar BR (2013) Formulation, application and evaluation of a stack emission model for coal-based power stations. Int J Environ Sci Technol 10(6):1235–1244

    Article  CAS  Google Scholar 

  • WHO (2002) The world health report 2002—reducing risks, promoting healthy life. http://www.who.int/whr/2002/en/

  • Zavila O (2012) Physical Modeling of gas pollutant motion in the atmosphere. Adv Model Fluid Dyn. Dr. Chaoqun Liu (Ed.), InTech. https://doi.org/10.5772/48405

Download references

Acknowledgements

This work is supported by the grant from the Ministry of Education and Science of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Issakhov.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Editorial responsibility: Parveen Fatemeh Rupani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issakhov, A.A., Baitureyeva, A.R. Modeling of a passive scalar transport from thermal power plants to atmospheric boundary layer. Int. J. Environ. Sci. Technol. 16, 4375–4392 (2019). https://doi.org/10.1007/s13762-019-02273-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02273-y

Keywords

Navigation