Skip to main content
Log in

Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

The tissue engineering and regenerative medicine approach require biomaterials which are biocompatible, easily reproducible in less time, biodegradable and should be able to generate complex three-dimensional (3D) structures to mimic the native tissue structures. Click chemistry offers the much-needed multifunctional hydrogel materials which are interesting biomaterials for the tissue engineering and bioprinting inks applications owing to their excellent ability to form hydrogels with printability instantly and to retain the live cells in their 3D network without losing the mechanical integrity even under swollen state.

Methods:

In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels–Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions.

Results:

The click chemistry-based hydrogels are formed spontaneously on mixing of reactive compounds and can encapsulate live cells with high viability for a long time. The recent works reported by combining the advantages of click chemistry and 3D bioprinting technology have shown to produce 3D tissue constructs with high resolution using biocompatible hydrogels as bioinks and in situ injectable forms.

Conclusion:

Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adopted and reprinted from [4] Copyright (2018), with permission from Elsevier

Fig. 3

Reprinted from [17] Copyright (2017), with permission from Elsevier

Fig. 4

Reproduced from [73] with permission from the Royal Society of Chemistry

Fig. 5

Reprinted (redrawn) with permission from [113]. Copyright 2018 American Chemical Society

Similar content being viewed by others

References

  1. Zou Y, Zhang L, Yang L, Zhu F, Ding M, Lin F, et al. “Click” chemistry in polymeric scaffolds: bioactive materials for tissue engineering. J Control Release. 2018;273:160–79.

    Article  CAS  PubMed  Google Scholar 

  2. Xu Z, Bratlie KM. Click chemistry and material selection for in situ fabrication of hydrogels in tissue engineering applications. ACS Biomater Sci Eng. 2018;4:2276–91.

    Article  CAS  Google Scholar 

  3. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 2001;40:2004–21.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials. 2014;35:4969–85.

    Article  CAS  PubMed  Google Scholar 

  5. Nagahama K, Kimura Y, Takemoto A. Living functional hydrogels generated by bioorthogonal cross-linking reactions of azide-modified cells with alkyne-modified polymers. Nat Commun. 2018;9:2195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ossipov DA, Hilborn J. Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules. 2006;39:1709–18.

    Article  CAS  Google Scholar 

  7. Lee BK, Noh JH, Park JH, Park SH, Kim JH, Oh SH, Kim MS. Thermoresponsive and biodegradable amphiphilic block copolymers with pendant functional groups. Tissue Eng Regen Med. 2018;15:393–402.

    Article  CAS  Google Scholar 

  8. Lee SM, Jang WD. Polyion complex micelle formed from tetraphenylethene containing block copolymer. Biomater Res. 2017;21:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yi G, Son J, Yoo J, Park C, Koo H. Application of click chemistry in nanoparticle modification and its targeted delivery. Biomater Res. 2018;22:13.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee SY, Lee Y, Le Thi P, Oh DH, Park KD. Sulfobetaine methacrylate hydrogel-coated anti-fouling surfaces for implantable biomedical devices. Biomater Res. 2018;22:3.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Buwalda SJ, Vermonden T, Hennink WE. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules. 2017;18:316–30.

    Article  CAS  PubMed  Google Scholar 

  12. DeForest CA, Anseth KS. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat Chem. 2011;3:925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu S, Dong M, Zhang Z, Fu G. High elasticity, strength, and biocompatible amphiphilic hydrogel via click chemistry and ferric ion coordination. Polym Adv Technol. 2017;28:1065–70.

    Article  CAS  Google Scholar 

  14. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126:15046–7.

    Article  CAS  PubMed  Google Scholar 

  15. Fu S, Dong H, Deng X, Zhuo R, Zhong Z. Injectable hyaluronic acid/poly(ethylene glycol) hydrogels crosslinked via strain-promoted azide-alkyne cycloaddition click reaction. Carbohydr Polym. 2017;169:332–40.

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Zheng J, Wang H, Becker ML, Leipzig ND. Neural stem cell encapsulation and differentiation in strain promoted crosslinked polyethylene glycol-based hydrogels. J Biomater Appl. 2018;32:1222–30.

    Article  CAS  PubMed  Google Scholar 

  17. Bai X, Lü S, Cao Z, Ni B, Wang X, Ning P, et al. Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous Diels–Alder (DA) click chemistry for bone repair. Carbohydr Polym. 2017;166:123–30.

    Article  CAS  PubMed  Google Scholar 

  18. Li S, Wang L, Yu X, Wang C, Wang Z. Synthesis and characterization of a novel double cross-linked hydrogel based on Diels–Alder click reaction and coordination bonding. Mater Sci Eng C Mater Biol Appl. 2018;82:299–309.

    Article  CAS  PubMed  Google Scholar 

  19. Xu K, Cantu DA, Fu Y, Kim J, Zheng X, Hematti P, et al. Thiol-ene Michael-type formation of gelatin/poly(ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds. Acta Biomater. 2013;9:8802–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lowe AB. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem. 2010;1:17–36.

    Article  CAS  Google Scholar 

  21. Grover GN, Lam J, Nguyen TH, Segura T, Maynard HD. Biocompatible hydrogels by oxime Click chemistry. Biomacromolecules. 2012;13:3013–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hardy JG, Lin P, Schmidt CE. Biodegradable hydrogels composed of oxime crosslinked poly(ethylene glycol), hyaluronic acid and collagen: a tunable platform for soft tissue engineering. J Biomater Sci Polym Ed. 2015;26:143–61.

    Article  CAS  PubMed  Google Scholar 

  23. Farahani PE, Adelmund SM, Shadish JA, DeForest CA. Photomediated oxime ligation as a bioorthogonal tool for spatiotemporally-controlled hydrogel formation and modification. J Mater Chem B. 2017;5:4435–42.

    Article  CAS  Google Scholar 

  24. Macdougall LJ, Truong VX, Dove AP. Efficient in situ nucleophilic thiol-yne click chemistry for the synthesis of strong hydrogel materials with tunable properties. ACS Macro Lett. 2017;6:93–7.

    Article  CAS  Google Scholar 

  25. Macdougall LJ, Wiley KL, Kloxin AM, Dove AP. Design of synthetic extracellular matrices for probing breast cancer cell growth using robust cyctocompatible nucleophilic thiol-yne addition chemistry. Biomaterials. 2018;178:435–47.

    Article  CAS  PubMed  Google Scholar 

  26. Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, et al. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res. 2016;20:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018;22:11.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jung CS, Kim BK, Lee J, Min BH, Park SH. Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med. 2018;15:155–62.

    Article  CAS  Google Scholar 

  29. Aleahmad F, Ebrahimi S, Salmannezhad M, Azarnia M, Jaberipour M, Hoseini M, et al. Heparin/collagen 3D scaffold accelerates hepatocyte differentiation of Wharton’s jelly-derived mesenchymal stem cells. Tissue Eng Regen Med. 2017;14:443–52.

    Article  CAS  Google Scholar 

  30. Murata D, Akieda S, Misumi K, Nakayama K. Osteochondral regeneration with a scaffold-free three-dimensional construct of adipose tissue-derived mesenchymal stromal cells in pigs. Tissue Eng Regen Med. 2018;15:101–13.

    Article  CAS  Google Scholar 

  31. Nelson VJ, Dinnunhan MFK, Turner PR, Faed JM, Cabral JD. A chitosan/dextran-based hydrogel as a delivery vehicle of human bone-marrow derived mesenchymal stem cells. Biomed Mater. 2017;12:035012.

    Article  PubMed  Google Scholar 

  32. Abdi SI, Choi JY, Lee JS, Lim HJ, Lee C, Kim J, et al. In vivo study of a blended hydrogel composed of pluronic F-127-alginate-hyaluronic acid for its cell injection application. Tissue Eng Regen Med. 2012;9:1–9.

    Article  CAS  Google Scholar 

  33. Carles-Carner M, Saleh LS, Bryant SJ. The effects of hydroxyapatite nanoparticles embedded in a MMP-sensitive photoclickable PEG hydrogel on encapsulated MC3T3-E1 pre-osteoblasts. Biomed Mater. 2018;13:045009.

    Article  PubMed  Google Scholar 

  34. Shimojo AA, Galdames SE, Perez AG, Ito TH, Luzo ÂC, Santana MH. In vitro performance of injectable chitosan-tripolyphosphate scaffolds combined with platelet-rich plasma. Tissue Eng Regen Med. 2016;13:21–30.

    Article  CAS  Google Scholar 

  35. Barthes J, Mutschler A, Dollinger C, Gaudinat G, Lavalle P, Le Houerou V, et al. Establishing contact between cell-laden hydrogels and metallic implants with a biomimetic adhesive for cell therapy supported implants. Biomed Mater. 2017;13:015015.

    Article  PubMed  Google Scholar 

  36. Song WY, Liu GM, Li J, Luo YG. Bone morphogenetic protein-2 sustained delivery by hydrogels with microspheres repairs rabbit mandibular defects. Tissue Eng Regen Med. 2016;13:750–61.

    Article  CAS  Google Scholar 

  37. Kim JH, Choi YJ, Yi HG, Wang JH, Cho DW, Jeong YH. A cell-laden hybrid fiber/hydrogel composite for ligament regeneration with improved cell delivery and infiltration. Biomed Mater. 2017;12:055010.

    Article  PubMed  Google Scholar 

  38. Mahapatra C, Jin GZ, Kim HW. Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance. Tissue Eng Regen Med. 2016;13:538–46.

    Article  CAS  Google Scholar 

  39. Yin H, Yan Z, Bauer RJ, Peng J, Schieker M, Nerlich M, et al. Functionalized thermosensitive hydrogel combined with tendon stem/progenitor cells as injectable cell delivery carrier for tendon tissue engineering. Biomed Mater. 2018;13:034107.

    Article  PubMed  Google Scholar 

  40. Kashte S, Jaiswal AK, Kadam S. Artificial bone via bone tissue engineering: current scenario and challenges. Tissue Eng Regen Med. 2017;14:1–14.

    Article  CAS  Google Scholar 

  41. Braun AC, Gutmann M, Lühmann T, Meinel L. Bioorthogonal strategies for site-directed decoration of biomaterials with therapeutic proteins. J Control Release. 2018;273:68–85.

    Article  CAS  PubMed  Google Scholar 

  42. Azagarsamy MA, McKinnon DD, Alge DL, Anseth KS. Coumarin-based photodegradable hydrogel: Design, synthesis, gelation, and degradation kinetics. ACS Macro Lett. 2014;3:515–9.

    Article  CAS  Google Scholar 

  43. Pérez JM, Cano R, Ramón DJ. Multicomponent azide–alkyne cycloaddition catalyzed by impregnated bimetallic nickel and copper on magnetite. RSC Adv. 2014;4:23943–51.

    Article  Google Scholar 

  44. Tasdelen MA, Yagci Y. Light-induced click reactions. Angew Chem Int Ed Engl. 2013;52:5930–8.

    Article  CAS  PubMed  Google Scholar 

  45. Li KW, Cen L, Zhou C, Zhang AK, Yao F, Tan LH, et al. Well-defined poly(ethylene glycol) hydrogels with enhanced mechanical performance prepared by thermally induced copper-catalyzed azide–alkyne cycloaddition. Macromol Mater Eng. 2016;301:1374–82.

    Article  CAS  Google Scholar 

  46. Guo J, Kim GB, Shan D, Kim JP, Hu J, Wang W, et al. Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. Biomaterials. 2017;112:275–86.

    Article  CAS  PubMed  Google Scholar 

  47. Guo J, Meng F, Jing X, Huang Y. Combination of anti-biofouling and ion-interaction by click chemistry for endotoxin selective removal from protein solution. Adv Healthc Mater. 2013;2:784–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kennedy DC, McKay CS, Legault MC, Danielson DC, Blake JA, Pegoraro AF, et al. Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J Am Chem Soc. 2011;133:17993–8001.

    Article  CAS  PubMed  Google Scholar 

  49. Besanceney-Webler C, Jiang H, Zheng T, Feng L, Soriano del Amo D, Wang W, et al. Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew Chem Int Ed Engl. 2011;50:8051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hong V, Presolski SI, Ma C, Finn MG. Analysis and Optimization of Copper-Catalyzed Azide-Alkyne Cycloaddition for Bioconjugation. Angew Chem Int Ed Engl. 2009;48:9879–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lou J, Stowers R, Nam S, Xia Y, Chaudhuri O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials. 2018;154:213–22.

    Article  CAS  PubMed  Google Scholar 

  52. Yigit S, Sanyal R, Sanyal A. Fabrication and functionalization of hydrogels through “click” chemistry. Chem Asian J. 2011;6:2648–59.

    Article  CAS  PubMed  Google Scholar 

  53. Yu F, Cao X, Du J, Wang G, Chen X. Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels–Alder click reaction and acylhydrazone bond. ACS Appl Mater Interfaces. 2015;7:24023–31.

    Article  CAS  PubMed  Google Scholar 

  54. Koehler KC, Alge DL, Anseth KS, Bowman CN. A Diels–Alder modulated approach to control and sustain the release of dexamethasone and induce osteogenic differentiation of human mesenchymal stem cells. Biomaterials. 2013;34:4150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nimmo CM, Owen SC, Shoichet MS. Diels-Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules. 2011;12:824–30.

    Article  CAS  PubMed  Google Scholar 

  56. Owen SC, Fisher SA, Tam RY, Nimmo CM, Shoichet MS. Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir. 2013;29:7393–400.

    Article  CAS  PubMed  Google Scholar 

  57. Fan M, Ma Y, Zhang Z, Mao J, Tan H, Hu X. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering. Mater Sci Eng C Mater Biol Appl. 2015;56:311–7.

    Article  CAS  PubMed  Google Scholar 

  58. Bai X, Lü S, Cao Z, Gao C, Duan H, Xu X, et al. Self-reinforcing injectable hydrogel with both high water content and mechanical strength for bone repair. Chem Eng J. 2016;288:546–56.

    Article  CAS  Google Scholar 

  59. Abandansari HS, Ghanian MH, Varzideh F, Mahmoudi E, Rajabi S, Taheri P, et al. In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells. Biomaterials. 2018;170:12–25.

    Article  CAS  PubMed  Google Scholar 

  60. Bai X, Lü S, Liu H, Cao Z, Ning P, Wang Z, et al. Polysaccharides based injectable hydrogel compositing bio-glass for cranial bone repair. Carbohydr Polym. 2017;175:557–64.

    Article  CAS  PubMed  Google Scholar 

  61. Lü S, Bai X, Liu H, Ning P, Wang Z, Gao C, et al. An injectable and self-healing hydrogel with covalent cross-linking in vivo for cranial bone repair. J Mater Chem B. 2017;5:3739–48.

    Article  Google Scholar 

  62. Smith LJ, Taimoory SM, Tam RY, Baker AEG, Binth Mohammad N, Trant JF, et al. Diels–Alder click-cross-linked hydrogels with increased reactivity enable 3D cell encapsulation. Biomacromolecules. 2018;19:926–35.

    Article  CAS  PubMed  Google Scholar 

  63. Prescher JA, Dube DH, Bertozzi CR. Chemical remodelling of cell surfaces in living animals. Nature. 2004;430:873–7.

    Article  CAS  PubMed  Google Scholar 

  64. DeForest CA, Polizzotti BD, Anseth KS. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater. 2009;8:659–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. DeForest CA, Anseth KS. Photoreversible patterning of biomolecules within click-based hydrogels. Angew Chem Int Ed Engl. 2012;51:1816–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kloxin AM, Lewis KJR, DeForest CA, Seedorf G, Tibbitt MW, Balasubramaniam V, et al. Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integr Biol (Camb). 2012;4:1540–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu J, Filion TM, Prifti F, Song J. Cytocompatible poly(ethylene glycol)-co-polycarbonate hydrogels cross-linked by copper-free, strain-promoted click chemistry. Chem Asian J. 2011;6:2730–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zheng J, Smith Callahan LA, Hao J, Guo K, Wesdemiotis C, Weiss RA, et al. Strain-promoted cross-linking of PEG-based hydrogels via copper-free cycloaddition. ACS Macro Lett. 2012;1:1071–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takahashi A, Suzuki Y, Suhara T, Omichi K, Shimizu A, Hasegawa K, et al. In situ cross-linkable hydrogel of hyaluronan produced via copper-free click chemistry. Biomacromolecules. 2013;14:3581–8.

    Article  CAS  PubMed  Google Scholar 

  70. Jiang H, Qin S, Dong H, Lei Q, Su X, Zhuo R, et al. An injectable and fast-degradable poly (ethylene glycol) hydrogel fabricated via bioorthogonal strain-promoted azide–alkyne cycloaddition click chemistry. Soft Matter. 2015;11:6029–36.

    Article  CAS  PubMed  Google Scholar 

  71. Liu X, Miller AL, Fundora KA, Yaszemski MJ, Lu L. Poly(ε-caprolactone) dendrimer cross-linked via metal-free click chemistry: injectable jydrophobic platform for tissue engineering. ACS Macro Lett. 2016;5:1261–5.

    Article  CAS  Google Scholar 

  72. Wang X, Li Z, Shi T, Zhao P, An K, Lin C, et al. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;73:21–30.

    Article  CAS  PubMed  Google Scholar 

  73. Han SS, Yoon HY, Yhee JY, Cho MO, Shim HE, Jeong JE, et al. In situ cross-linkable hyaluronic acid hydrogels using copper free click chemistry for cartilage tissue engineering. Polym Chem. 2018;9:20–7.

    Article  CAS  Google Scholar 

  74. Rydholm AE, Bowman CN, Anseth KS. Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials. 2005;26:4495–506.

    Article  CAS  PubMed  Google Scholar 

  75. Xi W, Scott TF, Kloxin CJ, Bowman CN. Click chemistry in materials science. Adv Funct Mater. 2014;24:2572–90.

    Article  CAS  Google Scholar 

  76. Lin CC, Raza A, Shih H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials. 2011;32:9685–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tseng TC, Hsieh FY, Theato P, Wei Y, Hsu SH. Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs. Biomaterials. 2017;133:20–8.

    Article  CAS  PubMed  Google Scholar 

  78. Brown TE, Carberry BJ, Worrell BT, Dudaryeva OY, McBride MK, Bowman CN, et al. Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials. 2018;178:496–503.

    Article  CAS  PubMed  Google Scholar 

  79. Pereira RF, Barrias CC, Bártolo PJ, Granja PL. Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering. Acta Biomater. 2018;66:282–93.

    Article  CAS  PubMed  Google Scholar 

  80. Colak B, Di Cio S, Gautrot JE. Biofunctionalized patterned polymer brushes via thiol–ene coupling for the control of cell adhesion and the formation of cell arrays. Biomacromolecules. 2018;19:1445–55.

    Article  CAS  PubMed  Google Scholar 

  81. Sharma S, Floren M, Ding Y, Stenmark KR, Tan W, Bryant SJ. A photoclickable peptide microarray platform for facile and rapid screening of 3-D tissue microenvironments. Biomaterials. 2017;143:17–28.

    Article  CAS  PubMed  Google Scholar 

  82. Ding Y, Xu X, Sharma S, Floren M, Stenmark K, Bryant SJ, et al. Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle. Acta Biomater. 2018;74:121–30.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou Y, Zhao S, Zhang C, Liang K, Li J, Yang H, et al. Photopolymerized maleilated chitosan/thiol-terminated poly(vinyl alcohol) hydrogels as potential tissue engineering scaffolds. Carbohydr Polym. 2018;184:383–9.

    Article  CAS  PubMed  Google Scholar 

  84. Kalia J, Raines RT. Hydrolytic stability of hydrazones and oximes. Angew Chem Int Ed Engl. 2008;47:7523–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Christman KL, Broyer RM, Schopf E, Kolodziej CM, Chen Y, Maynard HD. Protein nanopatterns by oxime bond formation. Langmuir. 2011;27:1415–8.

    Article  CAS  PubMed  Google Scholar 

  86. Baskin JM, Dehnert KW, Laughlin ST, Amacher SL, Bertozzi CR. Visualizing enveloping layer glycans during zebrafish early embryogenesis. Proc Natl Acad Sci U S A. 2010;107:10360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hentzen NB, Smeenk LEJ, Witek J, Riniker S, Wennemers H. Cross-linked collagen triple helices by oxime ligation. J Am Chem Soc. 2017;139:12815–20.

    Article  CAS  PubMed  Google Scholar 

  88. Tamura T, Song Z, Amaike K, Lee S, Yin S, Kiyonaka S, et al. Affinity-guided oxime chemistry for selective protein acylation in live tissue systems. J Am Chem Soc. 2017;139:14181–91.

    Article  CAS  PubMed  Google Scholar 

  89. Mather BD, Viswanatan K, Miller KM, Long TE. Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci. 2006;31:487–531.

    Article  CAS  Google Scholar 

  90. Chatani S, Nair DP, Bowman CN. Relative reactivity and selectivity of vinyl sulfones and acrylates towards the thiol-Michael addition reaction and polymerization. Polym Chem. 2013;4:1048–55.

    Article  CAS  Google Scholar 

  91. Hoyle CE, Lowe AB, Bowman CN. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev. 2010;39:1355–87.

    Article  CAS  PubMed  Google Scholar 

  92. Li GZ, Randev RK, Soeriyadi AH, Rees G, Boyer C, Tong Z, et al. Investigation into thiol-(meth)acrylate michael addition reactions using amine and phosphine catalysts. Polym Chem. 2010;1:1196–204.

    Article  CAS  Google Scholar 

  93. Elbert DL, Pratt AB, Lutolf MP, Halstenberg S, Hubbell JA. Protein delivery from materials formed by self-selective conjugate addition reactions. J Control Release. 2001;76:11–25.

    Article  CAS  PubMed  Google Scholar 

  94. Kim MS, Choi YJ, Noh I, Tae G. Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. J Biomed Mater Res A. 2007;83:674–82.

    Article  PubMed  CAS  Google Scholar 

  95. Yu Y, Deng C, Meng F, Shi Q, Feijen J, Zhong Z. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers. J Biomed Mater Res A. 2011;99:316–26.

    Article  PubMed  CAS  Google Scholar 

  96. Young JL, Engler AJ. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials. 2011;32:1002–9.

    Article  CAS  PubMed  Google Scholar 

  97. Patterson J, Hubbell JA. Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials. 2010;31:7836–45.

    Article  CAS  PubMed  Google Scholar 

  98. Jin R, Moreira Teixeira LS, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, et al. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater. 2010;6:1968–77.

    Article  CAS  PubMed  Google Scholar 

  99. Baldwin AD, Kiick KL. Reversible maleimide-thiol adducts yield glutathione-sensitive poly(ethylene glycol)-heparin hydrogels. Polym Chem. 2013;4:133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bang S, Jung UW, Noh I. Synthesis and biocompatibility characterizations of in situ chondroitin sulfate–gelatin hydrogel for tissue engineering. Tissue Eng Regen Med. 2018;15:25–35.

    Article  CAS  Google Scholar 

  101. Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res. 1999;47:152–69.

    Article  CAS  PubMed  Google Scholar 

  102. Tian WM, Zhang CL, Hou SP, Yu X, Cui FZ, Xu QY, et al. Hyaluronic acid hydrogel as Nogo-66 receptor antibody delivery system for the repairing of injured rat brain: in vitro. J Control Release. 2005;102:13–22.

    Article  CAS  PubMed  Google Scholar 

  103. Dahlmann J, Krause A, Möller L, Kensah G, Möwes M, Diekmann A, et al. Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials. 2013;34:940–51.

    Article  CAS  PubMed  Google Scholar 

  104. Martínez-Sanz E, Ossipov DA, Hilborn J, Larsson S, Jonsson KB, Varghese OP. Bone reservoir: injectable hyaluronic acid hydrogel for minimal invasive bone augmentation. J Control Release. 2011;152:232–40.

    Article  PubMed  CAS  Google Scholar 

  105. Karvinen J, Joki T, Ylä-Outinen L, Koivisto JT, Narkilahti S, Kellomäki M. Soft hydrazone crosslinked hyaluronan- and alginate-based hydrogels as 3D supportive matrices for human pluripotent stem cell-derived neuronal cells. React Funct Polym. 2018;124:29–39.

    Article  CAS  Google Scholar 

  106. Alves MH, Young CJ, Bozzetto K, Poole-Warren LA, Martens PJ. Degradable, click poly(vinyl alcohol) hydrogels: characterization of degradation and cellular compatibility. Biomed Mater. 2012;7:024106.

    Article  CAS  PubMed  Google Scholar 

  107. Zhu D, Wang H, Trinh P, Heilshorn SC, Yang F. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials. 2017;127:132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Krishna UM, Martinez AW, Caves JM, Chaikof EL. Hydrazone self-crosslinking of multiphase elastin-like block copolymer networks. Acta Biomater. 2012;8:988–97.

    Article  CAS  PubMed  Google Scholar 

  109. Li S, Xia Y, Qiu Y, Chen X, Shi S. Preparation and property of starch nanoparticles reinforced aldehyde–hydrazide covalently crosslinked PNIPAM hydrogels. J Appl Polym Sci. 2018;135:45761.

    Article  CAS  Google Scholar 

  110. Patenaude M, Hoare T. Injectable, mixed natural-synthetic polymer hydrogels with modular properties. Biomacromolecules. 2012;13:369–78.

    Article  CAS  PubMed  Google Scholar 

  111. Wang LL, Highley CB, Yeh YC, Galarraga JH, Uman S, Burdick JA. 3D extrusion bioprinting of single-and double-network hydrogels containing dynamic covalent crosslinks. J Biomed Mater Res A. 2018;106:865–75.

    Article  CAS  PubMed  Google Scholar 

  112. Yan HJ, Casalini T, Hulsart-Billström G, Wang S, Oommen OP, Salvalaglio M, et al. Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation. Biomaterials. 2018;161:190–202.

    Article  CAS  PubMed  Google Scholar 

  113. Huang J, Jiang X. Injectable and degradable pH-responsive hydrogel via spontaneous amino-yne click reaction. ACS Appl Mater Interfaces. 2018;10:361–70.

    Article  CAS  PubMed  Google Scholar 

  114. Aioub AG, Dahora L, Gamble K, Finn MG. Selection of natural peptide ligands for copper-catalyzed azide–alkyne cycloaddition catalysis. Bioconjug Chem. 2017;28:1693–701.

    Article  CAS  PubMed  Google Scholar 

  115. Jang J, Park JY, Gao G, Cho DW. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials. 2018;156:88–106.

    Article  CAS  PubMed  Google Scholar 

  116. Kurzrock R, Stewart DJ. Click chemistry, 3D-printing, and omics: the future of drug development. Oncotarget. 2016;7:2155–8.

    Article  PubMed  Google Scholar 

  117. Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJ, Bowman RW, et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem. 2012;4:349–54.

    Article  CAS  PubMed  Google Scholar 

  118. Içten E, Giridhar A, Taylor LS, Nagy ZK, Reklaitis GV. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms. J Pharm Sci Exp Pharmacol. 2015;104:1641–9.

    Article  CAS  Google Scholar 

  119. Bertlein S, Brown G, Lim KS, Jungst T, Boeck T, Blunk T, et al. Thiol–ene clickable gelatin: a platform bioink for multiple 3D biofabrication technologies. Adv Mater. 2017;29:1703404.

    Article  CAS  Google Scholar 

  120. Li S, Xu Y, Yu J, Becker ML. Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials. 2017;141:176–87.

    Article  CAS  PubMed  Google Scholar 

  121. Stichler S, Jungst T, Schamel M, Zilkowski I, Kuhlmann M, Böck T, et al. Thiol-ene clickable polyglycidol hydrogels for biofabrication. Ann Biomed Eng. 2017;45:273–85.

    Article  PubMed  Google Scholar 

  122. Yin R, Zhang N, Wang K, Long H, Xing T, Nie J, et al. Material design and photo-regulated hydrolytic degradation behavior of tissue engineering scaffolds fabricated via 3D fiber deposition. J Mater Chem B. 2017;5:329–40.

    Article  CAS  Google Scholar 

  123. Leijten J, Seo J, Yue K, Santiago GT, Tamayol A, Ruiz-Esparza GU, et al. Spatially and temporally controlled hydrogels for tissue engineering. Mater Sci Eng R Rep. 2017;119:1–35.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Yeh YC, Ouyang L, Highley CB, Burdick JA. Norbornene-modified poly (glycerol sebacate) as a photocurable and biodegradable elastomer. Polym Chem. 2017;8:5091–9.

    Article  CAS  Google Scholar 

  125. Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017;57:1–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. You S, Li J, Zhu W, Yu C, Mei D, Chen S. Nanoscale 3D printing of hydrogels for cellular tissue engineering. J Mater Chem B. 2018;6:2187–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant No. (2015R1A2A1A10054592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insup Noh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

There are no animal or human experiments carried out for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopinathan, J., Noh, I. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications. Tissue Eng Regen Med 15, 531–546 (2018). https://doi.org/10.1007/s13770-018-0152-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-018-0152-8

Keywords

Navigation