Skip to main content
Log in

Protein Content in Silken Webs of Cellar Spiders (Family-Pholcidae): Effect of Habitat and Senescence

  • Short Communication
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

Different class of spiders spin silk to construct different web architectures. Spider’s silk is an extraordinary semi-crystalline biopolymer, which is highly tough and elastic. In the present study we have assessed the total protein content in spider webs produced by young and old cellar spiders (family pholcidae) inhabiting different environments. Data revealed that the total protein content in webs spun by young spiders was higher compared to old spiders of the same spider family. Also, the total protein content in webs spun by garden spiders was significantly higher compared to house spiders of the same spider family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. World Spider Catalog (2017) World Spider Catalog. Natural History Museum Bern (version 18.0). http://wsc.nmbe.ch. Accessed 31 Jan 2016

  2. Lawania KK, Mathur P (2015) Study on the pattern and archetecture of spider’s web with special reference to seasonal abundance in eastern region of Rajasthan. India J Environ Sci Toxicol Food Tech 9(11):01–09

    Google Scholar 

  3. Vollrath F (2000) Strength and structure of spiders’ silks. J Biotechnol 74:67–83

    CAS  PubMed  Google Scholar 

  4. Sponner A, Vater W, Monajembashi S, Unger E, Grosse F, Weisshart K (2007) Composition and hierarchical organisation of a spider silk. PLoS ONE 2:e998

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  5. Porter D, Vollrath F, Shao Z (2005) Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur Phys J E Soft Matter 16:199–206

    Article  CAS  PubMed  Google Scholar 

  6. Römer L, Scheibel T (2008) The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2:154–161

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sebastian PA, Peter KV (2009) Spiders of India. Universities Press, Pvt. Ltd, Hyderabad, pp 255–260

    Google Scholar 

  8. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  9. Kaplan DL, Lombardi SJ (1990) The amino acid composition of major ampullate gland silk (dragline) of Nephila clavipes (Araneae, Tetragnathidae). J Arachnol 18:297–306

    Google Scholar 

  10. Bochek AM, Kirichenko DA, Novoselov NP, Sashina ES (2006) Structure and solubility of natural silk fibroin. Rus J Appl Chem 79(6):869–876

    Article  CAS  Google Scholar 

  11. Wongpanit P, Pornsunthorntawee O, Rujiravanit R (2012) Silk fibre composites. In: John MJ, Thomas S (eds) Natural polymers: composites. The Royal Society of Chemistry, Cambridge, pp 219–222

    Chapter  Google Scholar 

  12. Craig CL (1997) Evolution of arthropod silks. Annu Rev Entomol 42:231–267

    Article  CAS  PubMed  Google Scholar 

  13. Anotaux M, Toscani C, Leborgne R, Châline N, Pasquet A (2014) Aging and foraging efficiency in an orb-web spider. J Ethol 32:155–163

    Article  Google Scholar 

  14. Blamires SJ, Wu CL, Tso IM (2012) Variation in protein intake induces variation in spider silk expression. PLoS ONE 7:e31626

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kleinteich A, Schneider JM (2011) Developmental strategies in an invasive spider: constraints and plasticity. Ecol Entomol 36:82–93

    Article  Google Scholar 

  16. Higgins L (2006) Quantitative shifts in orb-web investment during development in Nephila Clavipes (Araneae, Nephilidae). J Arachnol 34:374–386

    Article  Google Scholar 

  17. Foucreau N, Renault D, Hidalgo K, Lugan R, Pétillon J (2012) Effects of diet and salinity on the survival, egg laying and metabolic fingerprints of the ground-dwelling spider Arctosa fulvolineata (Araneae, Lycosidae). Comp Biochem Physiol A Mol Integr Physiol 163:388–395

    Article  CAS  PubMed  Google Scholar 

  18. Blamires SJ, Sahni V, Dhinojwala A, Blackledge TA, Tso IM (2014) Nutrient deprivation induces property variations in spider gluey silk. PLoS ONE 9:e88487

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lepore E, Isaia M, Mammola S, Pugno N (2016) The effect of ageing on the mechanical properties of the silk of the bridge spider Larinioides cornutus (Clerck, 1757). Sci Rep 6:24699

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

National Academy of Sciences, India and Department of Science and Technology, Government of India are acknowledged for providing financial assistance to A. Chaudhary via Societal Research Fellowship (NASI/SoRF-Ι/2014-15/65). The Department of Biochemistry, University of Allahabad, is supported by FIST Grant from Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Ibrahim Rizvi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A., Rizvi, S.I. Protein Content in Silken Webs of Cellar Spiders (Family-Pholcidae): Effect of Habitat and Senescence. Natl. Acad. Sci. Lett. 40, 315–318 (2017). https://doi.org/10.1007/s40009-017-0577-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-017-0577-y

Keywords

Navigation