Skip to main content
Log in

Effect of Sub-Acute Oral Exposure of Bifenthrin on Biochemical Parameters in Crossbred Goats

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Bifenthrin is an insecticide, used extensively on some crops, including corn. Roughly 70 % of all US-grown hops and raspberries are treated with bifenthrin. The current study on bifenthrin was undertaken to investigate the potential alterations in biochemical parameters, induced by sub-acute oral exposure of bifenthrin, in goats. The animals were randomly divided into two groups. Group A (n = 3) received only tap water and served as control, whereas, Group B goats (n = 4) received bifenthrin by gavage (Telstar 10 EC) at the dose rate of 5 mg Kg−1 body weight for 28 consecutive days. Bifenthrin exposed group showed significant alterations in the enzyme biochemical parameters. The activities of erythrocyte cholinesterase and plasma cholinesterase reduced significantly from 7th day and 28th day of bifenthrin exposure, respectively. The activity of plasma aspartate aminotransferase and alanine aminotransferase increased significantly from the 21st day of bifenthrin exposure. The activity of acid phosphatase and alkaline phosphatase increased significantly from the 14th day of bifenthrin exposure. All these parameters returned to the non-significant levels by 7th day of post-exposure period. Non-significant alterations in blood urea nitrogen, creatinine and plasma proteins were also observed. The current study thus reveals that sub-acute oral administration of bifenthrin produces reversible liver damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharaf S, Khan A, Khan MZ, Aslam F, Saleemi MK, Mahmood F (2010) Clinico-hematological and micronuclear changes induced by cypermethrin in broiler chicks: their attenuation with vitamin E and selenium. Exp Toxicol Pathol 62:333–341

    Article  PubMed  CAS  Google Scholar 

  2. Soderlund DM, Clark JM, Sheets LP (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59

    Article  PubMed  CAS  Google Scholar 

  3. Vijverberg HPM, van den Bercken J (1982) Action of pyrethroid insecticides on the vertebrate nervous system. Neuropathol Appl Neurobiol 8:421–440

    Article  PubMed  CAS  Google Scholar 

  4. Liu H, Zhao M, Zhang C, Ma Y, Liu W (2008) Enantioselective cytotoxicity of the insecticide bifenthrin on a human amnion epithelial (FL) cell line. Toxicology 253:89–96

    Article  PubMed  CAS  Google Scholar 

  5. Lund AE, Narashashi T (1982) Dose-dependent interaction of the pyrethroid isomers with sodium channels of squid axon membranes. Neurotoxicology 3:11–24

    PubMed  CAS  Google Scholar 

  6. Prasanthi K, Muralidhara, Rajini PS (2005) Fenvelarate induced oxidative damage in rat tissue and its attenuation by dietery sesame oil. Food Chem Toxicol 43:299–306

    Article  CAS  Google Scholar 

  7. Tomlin CDS (1997) The pesticide manual: a world compendium. British Crop Protection Council, Surrey

    Google Scholar 

  8. Bateman DN (2000) Management of pyrethroid exposure. J Toxicol Clin Toxicol 38:107–109

    Article  PubMed  CAS  Google Scholar 

  9. Daniel KL, Moser VC (1993) Utility of neurobehavioral screening battery for differentiating the effects of two pyrethroids, permethrin and cypermethrin. Neurotoxicol Teratol 15:71–83

    Article  Google Scholar 

  10. Kaur R, Dumka VK, Rampal S, Ranjan B, Ola A, Kumbhar GB (2010) Effect of sub-acute oral exposure of cyfluthrin on biochemical parameters in Bubalus Bubalis. J Vet Pharmacol Toxicol 9:20–22

    Google Scholar 

  11. Kumar V, Kaur B, Sandu HS (2002) Experimental cypermethrin toxicity in buffalo calves. Indian J Anim Sci 72:658–660

    Google Scholar 

  12. Kaur J, Sandu HS (2001) Subacute oral toxicity of cypermethrin and deltamethrin in buffalo calves. Indian J Anim Sci 71:1150–1152

    Google Scholar 

  13. Hussain S, Khan MZ, Khan A, Javed I, Asi MR (2009) Toxicopathological effects in rats induced by concurrent exposure to aflatoxin and cypermethrin. Toxicon 53:33–41

    Article  PubMed  CAS  Google Scholar 

  14. Khan A, Hafiz AM, Faridi AM, Khan MZ, Siddique M, Hussain I, Ahmad M (2009) Effects of cypermethrin on some clinico-hemato-biochemical and pathological parameters in male dwarf goats (Capra hircus). Exp Toxicol Pathol 61:151–160

    Article  PubMed  CAS  Google Scholar 

  15. Snedecor GW, Cochran WG (1967) Statistical methods, 6th edn. Iowa State University Press, Iowa City IA

    Google Scholar 

  16. Tamang RK, Jha GJ, Singh KK (1991) Clinicopathology of acute cypermethrin in goats. Indian J Anim Sci 61:493–494

    Google Scholar 

  17. Ahmet A, Seval Y, Izzet K, Ibrahim P, Bulent T (2005) The effects of vitamin E and selenium on cypermethrin-induced oxidative stress in rats. Turk J Vet Anim Sci 29:385–391

    Google Scholar 

  18. Ansari MZ, Kumar A, Prasad RL, Basu A, Sahai BN, Sinha AP (1990) Clinic-biochemical use of serum acetylcholine esterase following treatment with synthetic pyrethroids, cypermethrin and fenvalerate in cattle and buffalo experimentally infested with Boophilus microplus. Indian J Exp Biol 28:241–244

    PubMed  CAS  Google Scholar 

  19. Rao GV, Rao KS (1997) Modulation of potassium across synaptomoses of rat brain by synthetic pyrethroids. J Neurol Sci 1479:127–133

    Article  Google Scholar 

  20. Marigoudar SR, Ahmeda RN, David M (2009) Cypermethrin induced: in vivo inhibition of the acetylcholinesterase activity in functionally different tissues of the freshwater teleost, Labeo rohita (Hamilton). Toxicol Environ Chem 91:1175–1182

    Article  CAS  Google Scholar 

  21. Singh G, Sharma LD, Ahmad AH, Singh SP (1999) Fenvalerate-induced dermal toxicity in buffalo calves. J Appl Anim Res 16:205–210

    Article  CAS  Google Scholar 

  22. Patel BJ, Singh SP, Joshi DV (2001) Effects of induced cypermethrin toxicity on transaminase activity of cross bred calves. Indian Vet J 78:202–204

    Google Scholar 

  23. Shakoori AR, Alam J, Ali SS (1990) Toxic effects of Telstar, a new synthetic pyrethroid on blood and liver of rabbit. Pak J Zool 22:300–389

    Google Scholar 

  24. Wilson R, Doell BH, Groger W, Hope J, Gattately JB (1970) The physiology of liver enlargement. In: Roe FJC (ed) Metabolic Aspects of Food Safety. Blackwell Scientific Publications, Oxford, p 363

    Google Scholar 

  25. Clampitt RB, Hart RJ (1978) The tissue activities of some diagnostic enzymes in ten mammalian species. J Comp Pathol 88:607–621

    Article  PubMed  CAS  Google Scholar 

  26. Khan A, Ahmad L, Khan MZ (2012) Hemato-biochemical changes induced by pyrethroid insecticides in avian, fish and mammalian species. Int J Agr Biol 14:834–842

    CAS  Google Scholar 

  27. Ramazotto JL, Carlin R (1978) Effect of DMSO on SGOT during hypothermia adrenalectomized rats. Life Sci 22:329–336

    Article  Google Scholar 

  28. Drotman RB, Lawhorn GT (1978) Serum enzymes as indicators of chemically induced liver damage. Drug Chem Toxicol 1:163–171

    Article  PubMed  CAS  Google Scholar 

  29. Grewal G, Verma PK, Dhar VJ, Srivastava AK (2009) Toxicity of sub-acute oral adminstration of cyperthrin in rats with special reference to histopathological changes. Int J Green Pharm 3:293–299

    Article  Google Scholar 

  30. Cornelius CE (1989) Liver function. In: Kaneko JJ (ed) Clinical Biochemistry of domestic animals, 4th edn. Academic Press, San Deiego, pp 364–397

    Google Scholar 

  31. Naveed AP, Venkaeshwarlu Janaiah C (2011) Biochemical alteration induced by triazophos in the blood plasma of fish, Channa punctatus (Bloch). Ann Biol Res 2:31–37

    CAS  Google Scholar 

  32. Poppy JA, Cattley RC (1991) Hepatobillary system. In: Haschek WM, Rousseaux CG (eds) Handbook of toxicologic pathology. Academic Press, Inc, San Diego, pp 279–315

    Google Scholar 

  33. Choudhary N, Sharma M, Verma P, Joshi SC (2003) Hepato and nephrotoxicity in rat exposed to endosulfan. J Environ Biol 24:305–308

    PubMed  CAS  Google Scholar 

  34. Mishra A, Dewangan G, Mahajan V, Mandal TK (2012) Effect of flumethrin on tissue biochemistry following oral administration in wistar albino rats. Int J Pharm Bio Sci 3:191–200

    CAS  Google Scholar 

  35. Shrivastava AK, Raina R, Choudhary RK, Malik TK (1989) The acute toxicity and biochemical alterations in rats after single oral exposure to dichlorvos. Pesticides 2:35–40

    Google Scholar 

  36. Amin KA, Khalid S, Hashem (2012) Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Vet Res 8:45

    Article  PubMed  CAS  Google Scholar 

  37. Manna PR, Eubank DW, Lalli E, Sassone-Corsi P, Stocco DM (2003) Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor. J Mol Endocrinol 30:381–397

    Article  PubMed  CAS  Google Scholar 

  38. Muthuviveganandavel VP, Muthuraman S, Muthu Srikumar K (2008) A study on low dose cypermethrin induced histopathology, lipid peroxidation and marker enzyme changes in male rat. Pestic Biochem Physiol 91:12–16

    Article  CAS  Google Scholar 

  39. Manna S, Bhattacharyya D, Mandal TK, Das S (2005) Repeated dose toxicity of deltamethrin in rats. Indian J Pharmacol 37:160–164

    Article  CAS  Google Scholar 

  40. Shah MAA, Gupta PK (2001) Subacute toxicity studies on permethrin- a synthetic pyrethoid insecticide with particular reference to biochemical changes in rats. Indian J Toxicol 8:61–67

    Google Scholar 

  41. Law M, Elmore S (2008) Mechanisms of Cell Death. In: Smart RC, Hodgson E (eds) Molecular and biochemical toxicology, 4th edn. Wiley, New York, pp 287–318

    Chapter  Google Scholar 

  42. Tarloff JB, Wallace AD (2008) Biochemical mechanisms of renal toxicity. In: Smart RC, Hodgson E (eds) Molecular and biochemical toxicology, 4th edn. Wiley, New York, pp 693–723

    Chapter  Google Scholar 

  43. Ranjan B, Dumka VK, Ola AK, Rampal S (2012) Effect of oral subacute exposure of acetamiprid on some biochemical parameters in buffalo calves. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40011-012-0085-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Mehraj Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.M., Sultana, M., Raina, R. et al. Effect of Sub-Acute Oral Exposure of Bifenthrin on Biochemical Parameters in Crossbred Goats. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 83, 323–328 (2013). https://doi.org/10.1007/s40011-012-0150-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-012-0150-x

Keywords

Navigation