Skip to main content
Log in

Study on four disruptive technologies for 5G and beyond wireless communication

  • S.I. : Visvesvaraya
  • Published:
CSI Transactions on ICT Aims and scope Submit manuscript

Abstract

A vital challenge for 5G and beyond wireless communication system is to meet the ever-growing demand for high-speed data with massive connectivity with low latency. In this report, the research outcomes of four key technologies, namely cognitive radio, non-orthogonal multiple access in heterogeneous networks, wireless caching and massive MIMO are explored for 5G and beyond systems. The key ideas for each technology are described, followed by the proposed techniques. Simulation results corroborate the superiority of proposed techniques for next generation wireless communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Paschos G, Baştuğ E, Land I, Caire G, Debbah M (2016) Wireless caching: technical misconceptions and business barriers. IEEE Commun Mag 54(8):16–22

    Article  Google Scholar 

  2. Wang X, Chen M, Taleb T, Ksentini A, Leung V (2014) Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun Mag 52(2):131–139

    Article  Google Scholar 

  3. Bharath BN, Nagananda KG, Poor HV (2016) A learning-based approach to caching in heterogenous small cell networks. IEEE Trans Commun 64(4):1674–1686

    Article  Google Scholar 

  4. Lu L, Li GY, Swindlehurst AL, Ashikhmin A, Zhang R (2014) An overview of massive MIMO: benefits and challenges. IEEE J Sel Top Signal Process 8(5):742–758

    Article  Google Scholar 

  5. Albreem MA, Juntti M, Shahabuddin S (2019) Massive MIMO detection techniques: a survey. IEEE Commun Surv Tutor 21(4):3109–3132

    Article  Google Scholar 

  6. de Lamare RC (2013) Massive MIMO systems: signal processing challenges and future trends. URSI Radio Sci Bull 2013(347):8–20

    Google Scholar 

  7. Datta A, Bhatia V (2019) A near maximum likelihood performance modified firefly algorithm for large MIMO detection. Swarm Evolut Comput 44:828–839

    Article  Google Scholar 

  8. Götze F, Tikhomirov A et al (2004) Rate of convergence in probability to the marchenko-pastur law. Bernoulli 10(3):503–548

    Article  MathSciNet  Google Scholar 

  9. Gunnarsson S, Flordelis J, Van der Perre L, Tufvesson F (2018) Channel hardening in massive MIMO-a measurement based analysis. In: IEEE 19th international workshop on signal processing advances in wireless communications (SPAWC). IEEE, pp 1–5

  10. Schreiber WF (1995) Advanced television systems for terrestrial broadcasting: some problems and some proposed solutions. Proc IEEE 83(6):958–981

    Article  Google Scholar 

  11. Qi C, Huang Y, Jin S, Wu L (2015) Sparse channel estimation based on compressed sensing for massive MIMO systems. In: Proceedings of IEEE international conference on communication, pp 4558–4563

  12. Duttweiler DL (2000) Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans Acoust Speech Signal Process 8(5):508–518

    Article  Google Scholar 

  13. Liu A, Lau V, Dai W (2016) Joint burst LASSO for sparse channel estimation in multi-user massive MIMO. In: Proceedings of Kuala Lumpur, Malaysia, IEEE international conference on communcation, pp 1–6

  14. Cotter SF, Rao BD (2002) Sparse channel estimation via matching pursuit with application to equalization. IEEE Trans Commun 50(3):374–377

    Article  Google Scholar 

  15. Karabulut GZ, Yongacoglu A (2004) Sparse channel estimation using orthogonal matching pursuit algorithm. In: Proceedings of IEEE 60th vehicular technology conference, Los Angeles, CA, USA, pp 3880–3884

  16. Gay SL, Douglas SC (2002) Normalized natural gradient adaptive filtering for sparse and non-sparse systems. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, vol 2, Orlando, FL, USA, pp 1405–1408

  17. Staple G, Werbach K (2004) The end of spectrum scarcity [Spectrum allocation and utilization]. IEEE Spectrum 41(3):48–52

    Article  Google Scholar 

  18. Wang B, Liu KR (2011) Advances in cognitive radio networks: a survey. IEEE J Sel Top Sig Process 5(1):5–23

    Article  Google Scholar 

  19. Haykin S, Setoodeh P (2015) Cognitive radio networks: the spectrum supply chain paradigm. IEEE Trans Cognit Commun Netw 1(1):3–28

    Article  Google Scholar 

  20. Stevenson CR, Chouinard G, Lei Z, Hu W, Shellhammer SJ, Caldwell W (2009) IEEE 802.22: the first cognitive radio wireless regional area network standard. IEEE Commun Mag 47(1):130–138

    Article  Google Scholar 

  21. Ghasemi A, Sousa ES (2008) Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs. IEEE Commun Mag 46(4):338

    Article  Google Scholar 

  22. Rao R, Cheng Q, Varshney PK (2011) Subspace-based cooperative spectrum sensing for cognitive radios. IEEE Sens J 11(3):611–620

    Article  Google Scholar 

  23. Mossaa AM, Jeoti V (2009) Cognitive radio: cyclostationarity-based classification approach for analog TV and wireless microphone signals. In: Proceedings IEEE innovative technologies in intelligent systems & industrial applications, pp 107–111

  24. Dhillon HS, Ganti RK, Baccelli F, Andrews JG (2012) Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J Sel Areas Commun 30(3):550–560

    Article  Google Scholar 

  25. Damnjanovic A, Montojo J, Wei Y, Ji T, Luo T, Vajapeyam M, Yoo T, Song O, Malladi D (2011) A survey on 3GPP heterogeneous networks. IEEE Wirel Commun 18(3):10–21

    Article  Google Scholar 

  26. Benjebbour A, Saito Y, Kishiyama Y, Li A, Harada A, Nakamura T (2013) Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. In: International symposium on intelligent signal processing and communication systems. IEEE, pp 770–774

  27. Swami P, Bhatia V, Vuppala S, Ratnarajah T (2018) A cooperation scheme for user fairness and performance enhancement in NOMA-HCN. IEEE Trans Veh Technol 67(12):11965–11978

    Article  Google Scholar 

  28. Ding Z, Dai L, Poor HV (2016) MIMO-NOMA design for small packet transmission in the Internet of Things. IEEE Access 4:1393–1405

    Article  Google Scholar 

  29. Cisco (2017) Cisco visual networking index: Global mobile data traffic forecast update (2016–2021)

  30. Fog computing and the internet of things: Extend the cloud to where the things are. https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf. Accessed 28 May 2020

  31. Krishnendu S, Bharath BN, Bhatia V (2019) Cache enabled cellular network: algorithm for cache placement and guarantees. IEEE Wirel Commun Lett 8(6):1550–1554

    Article  Google Scholar 

  32. Baştuğ E, Bennis M, Debbah M (2015) Cache-enabled small cell networks: modeling and tradeoffs. EURASIP J Wirel Commun Netw 2015:41

    Article  Google Scholar 

  33. Bharath BN, Nagananda KG, Gündüz D, Poor HV (2018) Caching with time-varying popularity profiles: a learning-theoretic perspective. IEEE Trans Commun 66(9):3837–3847

    Article  Google Scholar 

  34. Araújo DC, Maksymyuk T, de Almeida AL, Maciel T, Mota JC, Jo M (2016) Massive MIMO: survey and future research topics. IET Commun 10(15):1938–1946

    Article  Google Scholar 

  35. Tang C, Liu C, Yuan L, Xing Z (2016) High precision low complexity matrix inversion based on newton iteration for data detection in the massive MIMO. IEEE Commun Lett 20(3):490–493

    Article  Google Scholar 

  36. Gao X, Dai L, Ma Y, Wang Z (2014) Low-complexity near-optimal signal detection for uplink large-scale MIMO systems. Electron Lett 50(18):1326–1328

    Article  Google Scholar 

  37. Bishnu A, Bhatia V (2017) Sparse channel estimation for interference limited OFDM systems and its convergence analysis. IEEE Access 5:17781–17794

    Article  Google Scholar 

  38. Shi H, Zhang H, Li G, Wang X (2015) Stable embedding of Grassmann manifold via Gaussian random matrices. IEEE Trans Inf Theory 61(5):2924–2941

    Article  MathSciNet  Google Scholar 

  39. Hamm J, Lee DD (2008) Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proceedings ACM 25th international conference on machine learning, pp 376–383

  40. Wang H, Chai X, Hong X, Zhao G, Chen X (2016) Isolated sign language recognition with Grassmann covariance matrices. ACM Trans Access Comput 8(4):14:1–14:21

    Article  Google Scholar 

  41. Sakar CO, Kursun O (2017) Discriminative feature extraction by a neural implementation of canonical correlation analysis. IEEE Trans Neural Netw Learn Syst 28(1):164–176

    Article  Google Scholar 

  42. Bishnu A, Bhatia V (2018) Grassmann manifold-based spectrum sensing for TV white spaces. IEEE Trans Cognit Commun Netw 4(3):462–472

    Article  Google Scholar 

  43. Swami P, Bhatia V, Vuppala S, Ratnarajah T (2018) On user offloading in NOMA-HetNet using repulsive point process. IEEE Syst J 13(2):1409–1420

    Article  Google Scholar 

Download references

Acknowledgements

This is an outcome of the research and development work undertaken under the Visvesvaraya PhD scheme (Grant Nos. PhD-MLA/4(05)/2015-2016 and PhD-MLA/4(05)/2014-2015) of Ministry of Electronics and Information Technology, Government of India, being implemented by Digital India Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Bhatia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, V. Study on four disruptive technologies for 5G and beyond wireless communication. CSIT 8, 171–180 (2020). https://doi.org/10.1007/s40012-020-00287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40012-020-00287-3

Keywords

Navigation