Skip to main content

Advertisement

Log in

Wireline communication: the backbone of data transfer

  • S.I. : Visvesvaraya
  • Published:
CSI Transactions on ICT Aims and scope Submit manuscript

Abstract

This paper reviews the need of a high performance wireline communication in the background of wirelessly connected billions of sensor nodes by 2020s. It compares the performance of the state-of-the-art wireline transceivers and underlines the challenges in improving the performance in the midst of tapering in CMOS technology scaling. This paper elaborates on the ongoing research to track the increasing bandwidth requirements in processing platforms with an affordable power budget. Energy efficient design techniques for clock recovery in multilane receivers, receiver frontend in digital CDRs, reconfigurable voltage-mode transmitter, and PAM4 equalizer in full-duplex transceivers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Fluhr EJ et al (2015) The 12-core POWER8 processor with 7.6 Tb/s IO bandwidth, integrated voltage regulation, and resonant clocking. IEEE J Solid-State Circuits 50(1):10–23

    Article  Google Scholar 

  2. Singh U et al (2014) A 780 mW 4x28 Gb/s transceiver for 100 GbE Gearbox PHY in 40 nm CMOS. IEEE J Solid-State Circuits 49(12):3116–3129

    Article  Google Scholar 

  3. Naved R et al (2015) A 28 Gb/s multistandard serial link transceiver for backplane applications in 28 nm CMOS. IEEE J Solid-State Circuits 50(4):3089–3100

    Google Scholar 

  4. Saxena S et al (2015) A 2.8mW/Gb/s 14 Gb/s serial link transceiver in 65 nm CMOS. In:IEEE VLSI circuits sym. tech. papers, pp 1–2

  5. Saxena S et al (2017) A 2.8 mW/Gb/s, 14 Gb/s serial link transceiver. IEEE J Solid-State Circuits 52(5):1399–1411

    Article  Google Scholar 

  6. Ibrahim S et al (2011) Low-power CMOS equalizer design for 20-Gb/s systems. IEEE J Solid-State Circuits 46(6):1321–1336

    Article  Google Scholar 

  7. Agrawal A et al (2012) A 19-Gb/s serial link receiver with both 4-tap FFE and 5-tap DFE functions in 45-nm SOI CMOS. IEEE J Solid-State Circuits 47(12):3220–3231

    Article  Google Scholar 

  8. Abts D et al (2010)“Energy proportional datacenter networks. In: Proceedings of international symposium on computer architecture (ISCA), pp 338–347

  9. Barroso LA et al (2007) The case for energy-proportional computing. Computer 40(12):33–37

    Article  Google Scholar 

  10. Anand T et al (2015) A 7 Gb/s embedded clock transceiver for energy proportional links. IEEE J Solid-State Circuits 50(12):3101–3119

    Article  Google Scholar 

  11. Shu G et al (2016) A 16 Mb/s-8 Gb/s, 14.1-7.2pJ/bit source synchronous transceiver using DVFS and rapid on/off in 65 nm CMOS. In: ISSCC digest of technical papers, pp 398–399

  12. Bandarupalli JD et al (2019) A reconfigurable 0.1-10 Gb/s voltage-mode transmitter with 0.2-1 V output swings. IEEE Solid-State Circuits Lett 2(7):53–56

    Article  Google Scholar 

  13. Tomito Y et al (2007) A 20-Gb/s simultaneous bidirectional transceiver using a resistor transconductor hybrid in 0.11-μm CMOS. IEEE J Solid-State Circuits 42(3):627–636

    Article  Google Scholar 

  14. Cechhi D et al (2001) A 2 GB/s high speed link with differential simultaneous bi-directional IO. In: Proceedings of IEEE custom integrated circuits conference, pp 505–508

  15. Jalalifar M et al (2017) An energy-efficient and high-speed mobile memory I/O interface using simultaneous bi-directional. IEEE Trans Circuits Syst II Express Briefs 64(8):897–901

    Article  Google Scholar 

  16. Mukherjee S et al (2020) An energy-efficient 3 Gb/s PAM4 full-duplex transmitter with 2-tap feed forward equalizer. IEEE Trans Circuits Syst II Express Briefs 67(5):916–920

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the Young Faculty Research Fellowship of Visvesvaraya PhD programme of MeitY for financial support in procuring soldering station that is used in populating our PCB boards for testing ICs developed during our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Saxena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, S. Wireline communication: the backbone of data transfer. CSIT 8, 147–156 (2020). https://doi.org/10.1007/s40012-020-00297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40012-020-00297-1

Keywords

Navigation