Skip to main content
Log in

Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z.N. Chen, K.M. Luk, Antennas for Base Stations in Wireless Communications (McGraw-Hill, New York, 2009)

    Google Scholar 

  2. GPP TS 36.104 V12.0.0, 3rd Generation Partnership Project, Technical Specification Group Radio Access Network, Evolved Universal Terrestrial Radio Access (E-UTRA), Base Station (BS) radio transmission and reception (Release 12) (2013)

  3. NGMN-N-P-BASTA, Recommendation on Base Station Antenna Standards by NGMN Alliance, v. 9.6 (2013)

  4. NGMN-P-MATE, Multi-antenna Technology: Multi-antenna Future Requirements, v. 2.6 (2013)

  5. R.G. Vaughan, Polarization diversity in mobile communications. IEEE Trans. Veh. Technol. 39(3), 177–186 (1990)

    Article  Google Scholar 

  6. F. Boccardi et al., Multiple-antenna techniques in LTE-advanced. IEEE Commun. Mag. 50(3), 114–121 (2012)

    Article  Google Scholar 

  7. K.F. Lee, K.F. Tong, Microstrip patch antennas-basic characteristics and some recent advances. Proc. IEEE 100(7), 2169–2180 (2012)

    Article  Google Scholar 

  8. Z.N. Chen, M.Y.W. Chia, Experimental study on radiation performance of probe-fed suspended plate antennas. IEEE Trans. Antennas Propag. 51(8), 1964–1971 (2003)

    Article  Google Scholar 

  9. S.D. Targonski, R.B. Waterhouse, D.M. Pozar, A wideband aperture coupled stacked patch antenna using thick substrates. Electron. Lett. 32, 1941–1942 (1996)

    Article  Google Scholar 

  10. F. Yang, X.X. Zhang, X. Ye, Y.R. Samii, Wide-band E-shaped patch antennas for wireless communications. IEEE Trans. Antennas Propag. 99(7), 4349–4353 (2001)

    Google Scholar 

  11. K.L. Chung, C.H. Wong, Wang-shaped patch antenna for wireless communications. IEEE Antennas Wirel. Propag. Lett. 9, 638–640 (2010)

    Article  Google Scholar 

  12. K.F. Lee, K.M. Luk, K.F. Tong, S.M. Shum, T. Huynh, R.Q. Lee, Experimental and simulation studies of the coaxially-fed U-slot rectangular patch antenna. IEE Proc. Microw. Antennas Propag. 144(5), 354–358 (1997)

    Article  Google Scholar 

  13. C.L. Mak, K.M. Luk, K.F. Lee, Y.L. Chow, Experimental study of a microstrip patch antenna with an L-shaped probe. IEEE Trans. Antennas Propag. 48(5), 777–782 (2000)

    Article  Google Scholar 

  14. A. Clavin, A new antenna feed having equal E- and H-plane patterns. IRE Trans. Antennas Propag. 2, 113–119 (1954)

    Article  Google Scholar 

  15. K.M. Luk, B. Wu, The magnetoelectric dipole—a wideband antenna for base stations in mobile communications. Proc. IEEE 100(7), 2297–2307 (2012)

    Article  Google Scholar 

  16. A. Clavin, D.A. Huebner, F.J. Kilburg, An improved element for use in array antennas. IEEE Trans. Antennas Propag. 22(4), 521–526 (1974)

    Article  Google Scholar 

  17. H. Wong, K.M. Mak, K.M. Luk, Wideband shorted bowtie patch antenna with electric dipole. IEEE Trans. Antennas Propag. 56(7), 2098–2101 (2008)

    Article  Google Scholar 

  18. K.M. Mak, H. Wong, K.M. Luk, A shorted bowtie patch antenna with a cross dipole for dual polarization. IEEE Antennas Wireless Propag. Lett. 6, 50–53 (2007)

    Article  Google Scholar 

  19. K.M. Luk, H. Wong, A new wideband unidirectional antenna element. Int. J. Microw. Opt. Technol. 1(1), 35–44 (2006)

    Google Scholar 

  20. B.Q. Wu, K.M. Luk, A magneto-electric dipole with a modified ground plane. IEEE Antennas Wirel. Propag. Lett. 8, 627–629 (2009)

    Article  Google Scholar 

  21. L. Siu, K.M. Luk, Unidirectional antenna with loaded dielectric substrate. IEEE Antennas Wirel. Propag. Lett. 7, 50–53 (2008)

    Article  Google Scholar 

  22. Z.Y. Zhang, S.L. Zuo, J.Y. Zhao, Wideband folded bowtie antenna with γ-shaped strip feed and tuning stubs. Microw. Opt. Technol. Lett. 55(9), 2145–2149 (2013)

    Article  Google Scholar 

  23. L. Ge, K.M. Luk, A low-profile magneto-electric dipole antenna. IEEE Trans. Antennas Propag. 60(4), 1684–1689 (2012)

    Article  Google Scholar 

  24. L. Ge, K.M. Luk, A magneto-electric dipole antenna with low-profile and simple structure. IEEE Antennas Wireless Propag. Lett. 10, 140–142 (2013)

    Article  Google Scholar 

  25. L. Ge, K.M. Luk, A wideband magneto-electric dipole antenna. IEEE Trans. Antennas Propag. 60(11), 4987–4991 (2012)

    Article  Google Scholar 

  26. W.X. An, K.L. Lau, S.F. Li, Q. Xue, Wideband E-shaped dipole antenna with staircase-shaped feeding strip. Electron. Lett. 46(24), 1583–1584 (2010)

    Article  Google Scholar 

  27. C. Tang, Q. Xue, Vertical planar printed unidirectional antenna. IEEE Antennas Wirel. Propag. Lett. 12, 368–371 (2013)

    Article  Google Scholar 

  28. M. Li, K.M. Luk, A low-profile wideband planar antenna. IEEE Trans. Antennas Propag. 61(9), 4411–4418 (2013)

    Article  Google Scholar 

  29. H. Wang, S.F. Liu, L. Chen, W.T. Li, X.W. Shi, Gain enhancement for broadband vertical planar printed antenna with H-shaped resonator structures. IEEE Trans. Antennas Propag. 62(8), 4411–4415 (2014)

    Article  MATH  Google Scholar 

  30. W.X. An, H. Wong, K.L. Lau, S.F. Li, Q. Xue, Design of broadband dual-band dipole for base station antenna. IEEE Trans. Antennas Propag. 60(3), 1592–1595 (2012)

    Article  Google Scholar 

  31. B. Feng, W. Hong, S. Li, W. An, S. Yin, Dual-wideband double-layer magnetoelectric dipole antenna with a modified horned reflector for 2G/3G/LTE applications. Int. J. Antennas Propag. 509589, 1–9 (2013)

    Article  Google Scholar 

  32. B. Feng, W. An, S. Yin, L. Deng, S. Li, Dual-wideband complementary antenna with a dual-layer cross-ME-dipole structure for 2G/3G/LTE/WLAN applications. IEEE Antennas Wireless Propag. Lett. 14, 626–629 (2015)

    Article  Google Scholar 

  33. K. He, S.X. Gong, F. Gao, A wideband dual-band magneto-electric dipole antenna with improved feeding structure. IEEE Antennas Wireless Propag. Lett. 13, 1729–1732 (2014)

    Article  Google Scholar 

  34. S. Yan, P.J. Soh, G.A.E. Vandenbosch, Wearable dual-band magneto-electric dipole antenna for WBAN/WLAN applications. IEEE Trans. Antennas Propag. 63(9), 4165–4169 (2015)

    Article  Google Scholar 

  35. H. Zhai, J. Zhang, Y. Zang, Q. Gao, C. Liang, An LTE base-station magnetoelectric dipole antenna with anti-interference characteristics and its MIMO system application. IEEE Antennas Wireless Propag. Lett. 14, 906–909 (2015)

    Article  Google Scholar 

  36. R. Caso, A.A. Serra, M.R. Pino, P. Nepa, G. Manara, A wideband slot-coupled stacked-patch array for wireless communications. IEEE Antennas Wireless Propag. Lett. 9, 986–989 (2010)

    Article  Google Scholar 

  37. Y. Gou, S. Yang, J. Li, Z. Nie, A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications. IEEE Trans. Antennas Propag. 62(8), 4392–4395 (2014)

    Article  MATH  Google Scholar 

  38. A. Elsherbini, J. Wu, K. Sarabandi, Dual polarized wideband directional coupled sectorial loop antennas for radar and mobile base-station applications. IEEE Trans. Antennas Propag. 63(4), 1505–1513 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. H.W. Lai, K.M. Luk, Dual polarized patch antenna fed by meandering probes. IEEE Trans. Antennas Propag. 55(9), 2625–2627 (2007)

    Article  Google Scholar 

  40. J.Y. Deng, L.X. Guo, Y.Z. Yin, J. Qiu, Z.S. Wu, Broadband patch antennas fed by novel tuned loop. IEEE Trans. Antennas Propag. 61(4), 2290–2293 (2013)

    Article  Google Scholar 

  41. J.J. Xie, Y.Z. Yin, J.H. Wang, X.L. Liu, Wideband dual-polarised electromagnetic fed patch antenna with high isolation and low cross-polarisation. Electron. Lett. 49(3), 171–173 (2013)

    Article  Google Scholar 

  42. B. Li, Y.Z. Yin, W. Hu, Y. Ding, Y. Zhao, Wideband dual-polarized patch antenna with low cross polarization and high isolation. IEEE Antennas Wirel. Propag. Lett. 11, 427–430 (2012)

    Article  Google Scholar 

  43. K.M. Mak, X. Gao, H.W. Lai, Low cost dual polarized base station element for long term evolution. IEEE Trans. Antennas Propag. 62(11), 5861–5865 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Cui, R. Li, P. Wang, A novel broadband planar antenna for 2G/3G/LTE base stations. IEEE Trans. Antennas Propag. 61(5), 2767–2773 (2013)

    Article  Google Scholar 

  45. Y.H. Cui, R.L. Li, H.Z. Fu, A broadband dual-polarized planar antenna for 2G/3G/LTE base stations. IEEE Trans. Antennas Propag. 62(9), 4836–4840 (2014)

    Article  MATH  Google Scholar 

  46. Y. Liu, J. Wang, S. Gong, Wideband dual-polarized planar antenna for base stations. Microw. Opt. Technol. Lett. 57(8), 1948–1952 (2015)

    Article  Google Scholar 

  47. L. Siu, H. Wong, K.M. Luk, A dual-polarized magneto-electric dipole with dielectric loading. IEEE Trans. Antennas Propag. 57(3), 616–623 (2009)

    Article  Google Scholar 

  48. B.Q. Wu, K.M. Luk, A broadband dual-polarized magneto-electric dipole antenna with simple feeds. IEEE Antennas Wirel. Propag. Lett. 8, 60–63 (2009)

    Article  Google Scholar 

  49. M. Li, K. M. Luk, A wideband dual-polarized antenna with very low back radiation, in Proceedings of IEEE Asia-Pacific Microwave Conference, pp. 61–63 (2012)

  50. J.N. Lee, H.K. Kwon, B.S. Kang, K.C. Lee, Design of a dual-polarized small base station antenna with metallic cube for beyond 4G systems. Microw. Opt. Technol. Lett. 56(1), 91–96 (2014)

    Article  Google Scholar 

  51. B.Q. Wu, K.M. Luk, A novel miniaturized broadband dual-polarized dipole antenna for base station. IEEE Antennas Wireless Propag. Lett. 12, 1335–1338 (2013)

    Article  Google Scholar 

  52. Q. Xue, S.W. Liao, J.H. Xu, A differentially-driven dual-polarized magneto-electric dipole antenna. IEEE Trans. Antennas Propag. 61(1), 425–430 (2013)

    Article  Google Scholar 

  53. I. Govindanarayanan, N. Rangaswamy, R. Anbazhagan, Design and analysis of broadband magneto-electric dipole antenna for LTE femtocell base stations. J. Comput. Electron. 15(1), 200–209 (2016)

    Article  Google Scholar 

  54. S.B.T. Wang, A.M. Niknejad, R.W. Brodersen, Circuit modeling methodology for UWB omnidirectional small antennas. IEEE J. Sel. Areas Commun. 24(4), 871–877 (2006)

    Article  Google Scholar 

  55. T. Tuovinen, M. Berg, Impedance dependency on planar broadband dipole dimensions: an examination with antenna equivalent circuits. Prog. Electromagn. Res. 144, 249–260 (2014)

    Article  Google Scholar 

  56. K. Zhang, T. Wang, L.L. Cheng, Analysis of band-notched UWB printed monopole antennas using a novel segmented structure. Prog. Electromagn. Res. C 34, 13–27 (2013)

    Article  Google Scholar 

  57. G. Idayachandran, R. Nakkeeran, Compact magneto-electric dipole antenna for LTE femtocell base stations. Electron. Lett. 52(8), 574–576 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindanarayanan Idayachandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idayachandran, G., Nakkeeran, R. Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review. J. Inst. Eng. India Ser. B 99, 211–220 (2018). https://doi.org/10.1007/s40031-017-0313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-017-0313-5

Keywords

Navigation