Skip to main content
Log in

Arrhythmia Detection in ECG Signal Using Fractional Wavelet Transform with Principal Component Analysis

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Any significant alteration in the Electro-Cardio-Gram (ECG) signal wave components (P-QRS-T) for a time duration is detected as arrhythmia. In this paper, a novel fractional wavelet transform (FrWT) is used as a preprocessing tool. FrWT describes the given signal in time–frequency fractional domain using fractional Fourier transform and its denoising using wavelet transform. Because of this novel and intriguing property, it is broadly utilized as a noise removal tool in the fractional domain along with multiresolution analysis. Next, features are extracted using Yule–Walker autoregressive modeling. Dimensionality of the extracted features is to be reduced for proper detection of different types of arrhythmias. Principal component analysis has been applied for arrhythmia detection using variance estimation. The proposed method is evaluated on the basis of various performance parameters such as output SNR, mean squared error (MSE) and detection accuracy (\( {\text{DE}}_{\text{Acc}} \)). An output SNR of 33.41 dB, MSE of 0.1689% and Acc of 99.94% for real-time ECG database and output SNR of 25.25 dB, MSE of 0.1656%, \( {\text{DE}}_{\text{Acc}} \) of 99.89% for MIT-BIH Arrhythmia database are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.O. Rajankar, S.N. Talbar, An electrocardiogram signal compression techniques: a comprehensive review. Analog Integr. Circuits Signal Process. 98, 59–74 (2018)

    Google Scholar 

  2. S. Sahoo, P. Biswal, T. Das, S. Sabut, De-noising of ECG signal and QRS detection using Hilbert transform and adaptive thresholding. Procedia Technol. 25, 68–75 (2016)

    Google Scholar 

  3. R.J. Martis, U.R. Acharya, K.M. Mandana, A.K. Ray, C. Chakraborty, Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. J. Expert Syst. Appl. 39, 11792–11800 (2012)

    Google Scholar 

  4. P.S. Addison, Wavelet transforms and the ECG: a review. Physiol. Meas. 26, 155–199 (2005)

    Google Scholar 

  5. M.V. Kamath, T. Bentley, R. Spaziani, G. Tougas, E.L. Fallen, N. McCartney, J. Runions, A.R.M. Upton, Time–frequency analysis of heart rate variability signals in patients with autonomic dysfunction, in International Symposium on Time–Frequency and Time-Scale Analysis (TFTS-1996) (1996), pp. 373–376

  6. S. Qin, Z. Ji, Multi-resolution time-frequency analysis for detection of rhythms of EEG signals, in 2004 IEEE 11th Digital Signal Processing Workshop & IEEE Signal Processing Education Workshop (IEEE DSP 2004) (2004), pp. 338–341

  7. A.J.M.D. Meireles, ECG denoising based on adaptive signal processing technique. Thesis, Master of Technology in Electronics and Computer Science, Instituto Superior de Engenharia do Porto Portugal, 2011

  8. M. Das, S. Ari, Analysis of ECG signal denoising method based on S-transform. IRBM 34(6), 362–370 (2013)

    Google Scholar 

  9. E.J.S. Luz, W.R. Schwartz, G.C. Chávez, D. Menotti, ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Prog. Biomed. 127, 144–164 (2016)

    Google Scholar 

  10. V. Gupta, M. Mittal, R-peak detection in ECG signal using Yule-Walker and principal component analysis. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1575292

    Article  Google Scholar 

  11. V. Gupta, M. Mittal, Electrocardiogram signals interpretation using Chaos theory. J. Adv. Res. Dyn. Control Syst. 10(2), 2392–2397 (2018)

    Google Scholar 

  12. V. Gupta, M. Mittal, A novel method of cardiac arrhythmia detection in electrocardiogram signal. Int. J. Med. Eng. Inform. 12(5), 489-499 (2020). https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijmei

    Google Scholar 

  13. I. Kaur, R. Rajni, A. Marwaha, ECG signal analysis and arrhythmia detection using wavelet transform. J. Inst. Eng. India Ser. B 97(4), 499–507 (2016)

    Google Scholar 

  14. H.M. Rai, A. Trivedi, K. Chatterjee, S. Shukla, R-peak detection using Daubechies wavelet and ECG signal classification using radial basis function neural network. J. Inst. Eng. India Ser. B 95(1), 63–71 (2014)

    Google Scholar 

  15. G. Bhatnagar, Q.M.J. Wua, B. Raman, Discrete fractional wavelet transform and its application to multiple encryption. Inf. Sci. 223, 297–316 (2013)

    MathSciNet  MATH  Google Scholar 

  16. A. Ouelli, B. Elhadadi, H. Aissaoui, B. Bouikhalene, AR modeling for cardiac arrhythmia classification using MLP neural networks. Int. J. Comput. Appl. 47(24), 44–51 (2012)

    Google Scholar 

  17. M. Arnold, W.H.R. Miltner, H. Witte, R. Bauer, C. Braun, Adaptive AR modeling of nonstationary time series by means of Kalman filtering. IEEE Trans. Biomed. Eng. 45(5), 553–562 (1998)

    Google Scholar 

  18. M.P.S. Chawla, Segment classification of ECG data and construction of scatter plots using principal component analysis. J. Mech. Med. Biol. 8(3), 421–458 (2008)

    Google Scholar 

  19. Physionet database/MITBIH Arrhythmia database. Accessed 22 Nov 2017

  20. H. Dai, Z. Zheng, W. Wang, A new fractional wavelet transform. Commun. Nonlinear Sci. Numer. Simul. 44, 19–36 (2017)

    MathSciNet  MATH  Google Scholar 

  21. C. Guo, The application of fractional wavelet transform in image enhancement. Int. J. Comput. Appl. (2019). https://doi.org/10.1080/1206212X.2019.1626573

    Article  Google Scholar 

  22. J. Shi, N. Zhang, X. Liu, A novel fractional wavelet transform and its applications. Sci. China Inf. Sci. 55(6), 1270–1279 (2011)

    MathSciNet  MATH  Google Scholar 

  23. M. Alfaouri, K. Daqrouq, ECG signal denoising by wavelet transform thresholding. Am. J. Appl. Sci. 5(3), 276–281 (2008)

    Google Scholar 

  24. V. Gupta, M. Mittal, A Comparison of ECG signal pre-processing using FrFT, FrWT and IPCA for improved analysis. Innov. Res. Biomed. Eng. IRBM (2019). https://doi.org/10.1016/j.irbm.2019.04.003

    Article  Google Scholar 

  25. A. Dliou, R. Latif, M. Laaboubi, F.M.R. Maoulainine, Abnormal ECG signal analysis using non parametric time-frequency techniques. Arabian J. Sci. Eng. 39(2), 913–921 (2014)

    Google Scholar 

  26. R.J. Martis, U.R. Acharya, C.M. Lim, J.S. Suri, Characterization of ECG beats from cardiac arrhythmia using discrete cosine. Knowl. Based Syst. 45, 76–82 (2013)

    Google Scholar 

  27. M.R. Homaeinezhad, S.A. Atyabi, E. Tavakolli, H.N. Toosi, A. Ghaffari, R. Ebrahimpour, ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39(2), 2047–2058 (2012)

    Google Scholar 

  28. V. Gupta, M. Mittal, Respiratory signal analysis using PCA, FFT and ARTFA, in 2016 IEEE Proc. of ICEPES-16. Maulana Azad National Institute of Technology, Bhopal (2016), pp. 221–225

  29. C.H. Lin, Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier. Comput. Math. Appl. 55(4), 680–690 (2008)

    MathSciNet  MATH  Google Scholar 

  30. E.D. Übeyli, Statistics over features of ECG signals. Expert Syst. Appl. 36(5), 8758–8767 (2009)

    Google Scholar 

  31. I. Güler, E.D. Übeyli, ECG beat classifier designed by combined neural network model. Pattern Recognit. 38(2), 199–208 (2005)

    Google Scholar 

  32. S.M. Kay, Modern Spectral Estimation: Theory and Application, Signal Processing Series, 1988, 1st edn. (Prentice Hall, Englewood Cliffs, 1998), pp. 328–457

    Google Scholar 

  33. M. Kallas, P. Honeine, C. Richard, C. Francis, H. Amoud, Prediction of time series using Yule–Walker equations with kernels, in 2012 IEEE Int conf. on Acoustics, Speech and Signal Processing (ICASSP 2012) (2012), pp. 2185–2188

  34. A. Tomar, Various classifiers based on their accuracy for age estimation through facial features. Int. Res. J. Eng. Technol. 3(7), 1679–1682 (2016)

    Google Scholar 

  35. M.P.S. Chawla, A comparative analysis of principal component and independent component techniques for electrocardiograms. J. Neural Comput. Appl. 18(6), 539–556 (2009)

    Google Scholar 

  36. S. Nikan, F.G. Sridhar, M. Bauer, Pattern recognition application in ECG arrhythmia classification, in 10th Int Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017) (2017), pp. 48–56

  37. Y.C. Yeh, W.J. Wang, C.W. Chiou, Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals. Measurement 42(5), 778–789 (2009)

    Google Scholar 

  38. D. Singh, B.S. Saini, V. Kumar, Heart rate variability—a bibliographical survey. IETE J. Res. 54(3), 209–216 (2008)

    Google Scholar 

  39. V. Gupta, M. Mittal, QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. J. Inst. Eng. (India) Ser. B Springer (2019). https://doi.org/10.1007/s40031-019-00398-9

    Article  Google Scholar 

  40. S. Mukhopadhyay, P. Sircar, Parametric modelling of ECG signal. J. Med. Biol. Eng. Comput. 34(2), 171–174 (1996)

    Google Scholar 

  41. G. Singh, V. Gupta, A.K. Sekharmantri, A. Gupta, P. Kumar, Real-time online monitoring of electrocardiogram (ECG) using very low cost for developing countries, in AIP Conference Proceedings, vol. 1324(1) (2010), pp. 251–254

  42. C. Nayak, S.K. Saha, R. Kar, D. Mandal, Optimal SSA based wideband digital differentiator design for cardiac QRS complex detection application. Int. J. Numer. Model 32(2), 1–25 (2018)

    Google Scholar 

  43. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biol. Eng. 32, 230–236 (1985)

    Google Scholar 

  44. A. Sharma, S. Patidar, A. Upadhyaya, U.R. Acharya, Accurate tunable-Q wavelet transform based method for QRS complex detection. Comput. Electr. Eng. 75, 101–111 (2019)

    Google Scholar 

  45. G. Nallathambi, J.C. Príncipe, Integrate and fire pulse train automaton for QRS detection. IEEE Trans. Biol. Eng. 61(2), 317–326 (2014)

    Google Scholar 

  46. D. Pandit, L. Zhang, C. Liu, S. Chattopadhyay, N. Aslam, C.P. Lim, A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. Comput. Methods Prog. Biomed. 144, 61–75 (2017)

    Google Scholar 

  47. O. Yakut, E.D. Bolat, An improved QRS complex detection method having low computational load. Biomed. Signal Process. Control 42, 230–241 (2018)

    Google Scholar 

  48. S. Yazdani, J.M. Vesin, Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Digital Signal Process. 56, 100–109 (2016)

    MathSciNet  Google Scholar 

  49. A. Yazdani, S. Fallet, J.M. Vasin, A novel short-term event extraction algorithm for biomedical signals. IEEE Trans. Biomed. Eng. 65(4), 754–762 (2018)

    Google Scholar 

  50. B. Biswal, ECG signal analysis using modified S-transform. Healthc Technol. Lett. 4(2), 68–72 (2017)

    Google Scholar 

  51. V. Gupta, M. Mittal, Chaos theory: an emerging tool for arrhythmia detection. Sens. Imaging 21(10), 1–22 (2020). https://doi.org/10.1007/s11220-020-0272-9

    Article  Google Scholar 

  52. L.D. Sharma, R.K. Sunkaria, Myocardial infarction detection and localization using optimal features based lead specific approach. IRBM 41, 58–70 (2020)

    Google Scholar 

  53. V. Gupta, M. Mittal, Efficient R-peak detection in electrocardiogram signal based on features extracted using Hilbert transform and Burg method. J. Inst. Eng. India Ser. B (2020). https://doi.org/10.1007/s40031-020-00423-2

    Article  Google Scholar 

  54. V. Gupta, M. Mittal, R-peak based arrhythmia detection using Hilbert transform and principal component analysis, in 2018 3rd International Innovative Applications of Computational Intelligence on Power, Energy and Controls with Their Impact on Humanity (CIPECH) (2018), pp. 116–119. https://doi.org/10.1109/cipech.2018.8724191

  55. S.S. Mehta, N.S. Lingayat, Development of SVM based ECG pattern recognition technique. IETE J. Res. 54, 5–11 (2008)

    Google Scholar 

  56. H. Dasgupta, Human age recognition by electrocardiogram signal based on artificial neural network. Sens. Imaging 17, 1–15 (2016)

    Google Scholar 

  57. S.H. Jothi, K.H. Prabha, Fetal electrocardiogram extraction using adaptive neuro-fuzzy inference systems and undecimated wavelet transform. IETE J. Res. 58, 469–475 (2012)

    Google Scholar 

  58. S.S. Mehta, N.S. Lingayat, SVM-based algorithm for recognition of QRS complexes in electrocardiogram. IRBM 29, 310–317 (2008)

    Google Scholar 

  59. C. Nayak, S.K. Saha, R. Kar, D. Mandal, An efficient QRS complex detection using optimally designed digital differentiator. Circuits Syst. Signal Process. 38, 716–749 (2019)

    Google Scholar 

  60. B. Halder, S. Mitra, M. Mitra, Classification of complete myocardial infarction using rule-based rough set method and rough set explorer system. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1588175

    Article  Google Scholar 

  61. A. Sheetal, H. Singh, A. Kaur, QRS detection of ECG signal using hybrid derivative and MaMeMi filter by effectively eliminating the baseline wander. Analog Integr. Circuits Signal Process. 98, 1–9 (2019)

    Google Scholar 

  62. B. Subramanian, A. Ramasamy, Investigation on the compression of electrocardiogram signals using dual tree complex wavelet transform. IETE J. Res. (2017). https://doi.org/10.1080/03772063.2016.1275988

    Article  Google Scholar 

  63. A. Giorgio, C. Guaragnella, D.A. Giliberti, Improving ECG signal denoising using wavelet transform for the prediction of malignant arrhythmias. Int. J. Med. Eng. Inform. 12, 135–150 (2020)

    Google Scholar 

  64. G. Hanumantha Rao, S. Rekha, A 0.8-V, 55.1-dB DR, 100 Hz low-pass filter with low-power PTAT for bio-medical applications. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1682074

    Article  Google Scholar 

  65. R.B. Pachori, M. Kumar, P. Avinash, K. Shashank, U.R. Acharya, An improved online paradigm for screening of diabetic patients using RR-interval signals. J. Mech. Med. Biol. (2016). https://doi.org/10.1142/s0219519416400030

    Article  Google Scholar 

  66. M. Jangra, S.K. Dhull, K.K. Singh, ECG arrhythmia classification using modified visual geometry group network (mVGGNet). J. Intell. Fuzzy Syst. 38, 3151–3165 (2020)

    Google Scholar 

  67. M. Mortezaee, Z. Mortezaie, V. Abolghasemi, An improved SSA-based technique for EMG removal from ECG. IRBM 40, 62–68 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Mittal, M. Arrhythmia Detection in ECG Signal Using Fractional Wavelet Transform with Principal Component Analysis. J. Inst. Eng. India Ser. B 101, 451–461 (2020). https://doi.org/10.1007/s40031-020-00488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-020-00488-z

Keywords

Navigation