Skip to main content
Log in

A novel feature extraction-based ECG signal analysis

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

An electrocardiogram (ECG) is an essential and fundamental diagnostic tool for assessing cardiac arrhythmias. It is mainly a combination of P, QRS, and T waves. But visual inspection of these waves may lead to wrong diagnosis due to physiological variability and noisy QRS complexes. Hence, computer-aided diagnosis (CAD) is required for accurate and efficient diagnosis of the clinical information. Therefore, in this paper, a novel technique, i.e., fractional wavelet transform (FrWT) is proposed to be used as a feature extraction technique. Afterward, Probabilistic Principal Component Analysis (PPCA) and K-Nearest Neighbor (KNN) are jointly used as classification (i.e., detection of R-peaks) tools for diagnosing heart abnormalities in various morphologies of the ECG signal robustly. The proposed technique has been evaluated on the basis of sensitivity (Se), detection error rate (Der), and positive predictive value (Ppv) for records in the MIT-BIH Arrhythmia database (M/B Ar DB). The proposed technique yields Se of 99.98%, Der of 0.036%, and Ppv of 99.98% for M/B Ar DB. These results establish robustness of the proposed technique, which will go a long way in assisting the cardiologists in improving overall health care system in hospitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Emelia, S.S.V. Benjamin, W. Clifton, A.M.C. Callaway, R. Alexander, S.C. Chang, E. Stephanie, M.C. Chiuve, N. Francesca, R.D. Delling et al., Heart disease and stroke statistics—2018 update: A report from the American heart association. Circulation 137, e67–e492 (2018)

    Google Scholar 

  2. S.O. Rajankar, S.N. Talbar, An electrocardiogram signal compression techniques: A comprehensive review. Analog Integr Circ Sig Process 98, 59–74 (2019). https://doi.org/10.1007/s10470-018-1323-1

    Article  Google Scholar 

  3. L. Xie, Z. Li, Y. Zhou, Y. He, J. Zhu, Computational diagnostic techniques for electrocardiogram signal analysis. Sensors 20, 6318 (2020). https://doi.org/10.3390/s20216318

    Article  Google Scholar 

  4. V. Gupta et al., Auto-regressive Time Frequency Analysis (ARTFA) of Electrocardiogram (ECG) signal. Int. J. Appl. Eng. Res. 13(6), 133–138 (2019)

    Google Scholar 

  5. H. Kaur, R. Rajni, On the detection of Cardiac Arrhythmia with Principal Component Analysis. J. Wirel. Pers. Commun. 97, 5495–5509 (2017)

    Article  Google Scholar 

  6. MV Kamath, T Bentley, R Spaziani, G Tougas, EL Fallen, N McCartney, J Runions, and ARM Wpton 1996 Time–frequency analysis of heart rate variability signals in patients with autonomic dysfunction,” In: Proceedings of the IEEE-SP international symposium on time–frequency and time-scale analysis.

  7. Y. Wu, L. Zhang, ECG classification using ICA features and support vector machines. Proc. of LNCS on ICONIP 7062, 146–154 (2011)

    Google Scholar 

  8. Z.E.H. Slimane, A.N. Ali, QRS complex detection using Empirical Mode Decomposition. Dig. Sig. Proc. 20(4), 1221–1228 (July 2010)

    Article  Google Scholar 

  9. A. Sheetal, H. Singh, A. Kaur, QRS detection of ECG signal using hybrid derivative and MaMeMi filter by effectively eliminating the baseline wander. Analog Integr. Circuit Signal Process. 98(1), 1–9 (2019)

    Article  Google Scholar 

  10. A.K. Verma, I. Saini, B.S. Saini, Alexander fractional differential window filter for ECG denoising, Austra. Phys. Eng. Sci. Med. 41(2), 519–539 (2018)

    Article  Google Scholar 

  11. M. Das, S. Ari, Analysis of ECG signal denoising method based on S-transform. IRBM 34(6), 362–370 (2013)

    Article  Google Scholar 

  12. A.J.M.D. Meireles, ECG Denoising Based on Adaptive Signal Processing Technique, Master of Technology in Electronics and Computer Science (Degree in Electronics and Computer Science, Portugal, 2011).

    Google Scholar 

  13. C Zhang, X Li, and M Zhang 2010 A novel ECG signal denoising method based on Hilbert-Huang Transform. In: Proceedings of the IEEE conference on Computer and Communication Technologies in Agriculture Engineering (CCTAE), 284–287

  14. B. Venkataramanaiah, J. Kamala, ECG signal processing and KNN classifier-based abnormality detection by VH-doctor for remote cardiac healthcare monitoring. Soft Comput (2020). https://doi.org/10.1007/s00500-020-05191-1

    Article  Google Scholar 

  15. A. Lyon, A. Minchole, J.P. Martınez, P. Laguna, B. Rodriguez, Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. J. R. Soc. Interface 15, 20170821 (2018). https://doi.org/10.1098/rsif.2017.0821

    Article  Google Scholar 

  16. S. Poornachandra, N. Kumaravel, A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function. Dig. Sig. Pro. 18(2), 116–126 (Mar. 2008)

    Article  Google Scholar 

  17. M. Jia, F. Li, Z. Chen, X. Xiang, X. Yan, High noise tolerant R-peak detection method based on deep convolution neural network. IEICE Trans. Inf. Syst. E102–D(11), 2272–2275 (2019)

    Article  Google Scholar 

  18. Y Kaya and H Pehlivan 2015 Feature selection using genetic algorithms for premature ventricular contraction classification,” In: Proceedings. 9th International Conf. on IEEE Electrical and Electronics Engineering, Turkey, 1229–1232.

  19. V. Gupta, M. Mittal 2019 R-Peak Detection in ECG Signal Using Yule–Walker and Principal Component Analysis. IETE J. Res. https://doi.org/10.1080/03772063.2019.1575292

  20. A. Kaur, A. Agarwal, R. Agarwal, S. Kumar, A novel approach to ECG R-peak detection. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-018-3557-8

    Article  Google Scholar 

  21. C.C. Lin, H.Y. Chang, Y.H. Huang, C.Y. Yeh, A novel wavelet-based algorithm for detection of QRS complex. Appl. Sci. 9, 2142 (2019). https://doi.org/10.3390/app9102142

    Article  Google Scholar 

  22. W.G. Morrison, I.J. Swann, Electrocardiograph interpretation by junior doctors. Emerg. Med. J. 7, 108–110 (1990)

    Article  Google Scholar 

  23. C. Robert et al., Guidelines for electrocardiography: A report of the American College of Cardiology/American Heart Association Task Force on assessment of diagnostic and therapeutic cardiovascular procedures (Committee on Electrocardiography). J. Am. Coll. Cardiol. 19, 473–481 (1992)

    Article  Google Scholar 

  24. Y. Xiang, Z. Lin, J. Meng, Automatic QRS complex detection using two-level convolutional neural network. BioMed Eng OnLine 17, 13 (2018). https://doi.org/10.1186/s12938-018-0441-4

    Article  Google Scholar 

  25. M. Rakshit, S. Das, An efficient wavelet-based automated R-peaks detection method using Hilbert transform. Biocybern. Biomed. Eng. 37, 566–577 (2017)

    Article  Google Scholar 

  26. P.S. Addison, Wavelet transforms and the ECG: A review. Phys. Meas. 26, 155–199 (Aug. 2005)

    Article  Google Scholar 

  27. C. Cai, P.D.B. Harrington, Different discrete wavelet transforms applied to denoising analytical data. J. Chem. Inf. Comput. Sci. 38(6), 1161–1170 (Sep. 1998)

    Article  Google Scholar 

  28. G. Bhatnagar, Q.M.J. Wua, B. Raman, Discrete fractional wavelet transform and its application to multiple Encryption. Infor Sci. 223, 297–316 (Feb. 2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Pal, M. Mitra, Empirical mode decomposition based ECG enhancement and QRS detection. Com. Biol. Med. 42(1), 83–92 (Jan. 2012)

    Article  Google Scholar 

  30. B. Vishwanath, R.V. Pujeri, G. Devanagavi, Probabilistic principal component analysis-based dimensionality reduction and optimization for arrhythmia classification using ECG signals. Bio-Algorithms Med. Syst. 15(1), 18 (2019)

    Google Scholar 

  31. M. Jangra et al., ECG arrhythmia classification using modified visual geometry group network (mVGGNet). J. Intell. Fuzzy Syst. 38, 3151–3165 (2020)

    Article  Google Scholar 

  32. X. Lu, M. Pan, Y. Yu, QRS detection based on improved adaptive threshold. Hindawi J. Healthcare Eng. (2018). https://doi.org/10.1155/2018/5694595

    Article  Google Scholar 

  33. S. Yazdani, J.M. Vesin, Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Dig. Sig. Proc. 56, 100–109 (Sep. 2016)

    Article  MathSciNet  Google Scholar 

  34. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)

    Article  Google Scholar 

  35. J.S. Park, S.W. Lee, U. Park, R peak detection method using wavelet transform and modified shannon energy envelope. J. Heal. Eng (2017). https://doi.org/10.1155/2017/4901017

    Article  Google Scholar 

  36. Z. Li, D. Zhou, L. Wan et al., Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram. J. Electrocardiol. (2019). https://doi.org/10.1016/j.jelectrocard.2019.11.046

    Article  Google Scholar 

  37. V. Gupta, M. Mittal, QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. J. Inst. Eng. (India) (2019). https://doi.org/10.1007/s40031-019-00398-9

    Article  Google Scholar 

  38. V. Gupta, M. Mittal, V. Mittal, Chaos theory: An emerging tool for arrhythmia detection. Sens. Imag. 21(10), 1–22 (2020). https://doi.org/10.1007/s11220-020-0272-9

    Article  Google Scholar 

  39. C. Nayak, S.K. Saha, R. Kar, D. Mandal, An efficient and robust digital fractional order differentiator based ECG pre-processor design for QRS detection. IEEE Trans. Biomed. Circuits Syst. (2019). https://doi.org/10.1109/TBCAS.2019.2916676

    Article  Google Scholar 

  40. V. Gupta, M. Mittal, ECG (Electrocardiogram) signals interpretation using ChaosTheory. J. Adv. Res. Dyn. Cont. Sys. (JARDCS) 10(2), 2392–2397 (2018)

    Google Scholar 

  41. Gupta V and Mittal M, A novel method of cardiac arrhythmia detection in electrocardiogram signal. IJMEI, (in press). 2019

  42. C. Nayak, S.K. Saha, R. Kar, D. Mandal, An optimally designed digital differentiator based preprocessor for R-peak detection in electrocardiogram signal. Biomed. Signal Process. Control 49, 440–464 (Mar. 2019)

    Article  Google Scholar 

  43. V. Gupta et al., Performance evaluation of various pre-processing techniques for R-peak detection in ECG signal. IETE J. Res. (2020). https://doi.org/10.1080/03772063.2020.1756473

    Article  Google Scholar 

  44. L.D. Sharma, R.K. Sunkaria, Myocardial infarction detection and localization using optimal features based lead specific approach. IRBM 41, 58–70 (2020)

    Article  Google Scholar 

  45. V. Gupta et al., Principal component and independent component calculation of ECG signal in different posture. AIP Conf. Proc. 1414, 102–108 (2011)

    Article  Google Scholar 

  46. V Gupta and M Mittal, R-peak based Arrhythmia Detection using Hilbert Transform and Principal Component Analysis. 2018 3rd International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH). 116–119, 2018

  47. V. Gupta, M. Mittal, Efficient R-peak detection in electrocardiogram signal based on features extracted using Hilbert Transform and burg method. J Inst Eng India Ser B. (2020). https://doi.org/10.1007/s40031-020-00423-2

    Article  Google Scholar 

  48. V. Gupta, M. Mittal, Dimension reduction and classification in ECG signal interpretation using FA and PCA: A Comparison. Jangjeon Math. Soc. 21(4), 765–777 (2018)

    MathSciNet  MATH  Google Scholar 

  49. V Gupta and M Mittal, Respiratory Signal Analysis using PCA, FFT and ARTFA. 2016 International Conference on Electrical Power and Energy Systems (ICEPES), Maulana Azad National Institute of Technology, Bhopal, 2016

  50. V. Gupta, M. Mittal, Principal component analysis & factor analysis as an enhanced tool of pattern recognition. Int. J. Elec Electr. Eng Telecom. 1(2), 73–78 (2015)

    Google Scholar 

  51. V. Gupta, M. Mittal, KNN and PCA classifier with autoregressive modelling during different ECG signal interpretation. Procedia Comput. Sci. Elsevier 125, 18–24 (2018)

    Article  Google Scholar 

  52. P. Singh, Novel generalized Fourier representations and phase transforms. Digit. Signal Process. 106, 102830 (2020). https://doi.org/10.1016/j.dsp.2020.102830

    Article  Google Scholar 

  53. H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2000).

    Google Scholar 

  54. L.B. Almeida, The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42, 3084–3091 (1994)

    Article  Google Scholar 

  55. V.A. Narayanana, K.M.M. Prabhu, The fractional Fourier transform: theory, implementation and error analysis. J. Micropr. and Microsys. 27(10), 511–521 (Nov. 2003)

    Article  Google Scholar 

  56. V. Gupta, M. Mittal, V. Mittal, An efficient low computational cost method of R-peak detection. Wirel. Pers. Commun. (2020). https://doi.org/10.1007/s11277-020-08017-3

    Article  Google Scholar 

  57. V. Gupta et al., R-peak detection based chaos analysis of ECG signal. Analog. Integr. Circ. Sig. Process 102, 479–490 (2020)

    Article  Google Scholar 

  58. V. Gupta et al., R-peak detection using chaos analysis in standard and real time ECG databases. IRBM 40(6), 341–354 (2019)

    Article  Google Scholar 

  59. Physionet database/MIT-BIH Arrhythmia database/ Accessed on Nov 22, 2017.

  60. V. Gupta, M. Mittal, V. Mittal, ECG signal analysis using CWT, spectrogram and autoregressive technique. Iran J. Comput. Sci. (2021). https://doi.org/10.1007/s42044-021-00080-8

    Article  Google Scholar 

  61. M.M.A. Rahhal, Y. Bazi, H. Alhichri, N. Alajlan, F. Melgani, R.R. Yager, Deep learning approach for active classification of electrocardiogram signals. Info. Sci. 345, 340–354 (2016)

    Article  Google Scholar 

  62. V. Gupta, M. Mittal, A comparison of ECG signal pre-processing using FrFT, FrWT and IPCA for improved analysis. IRBM 40(3), 145–156 (2019)

    Article  Google Scholar 

  63. V. Gupta, M. Mittal, Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis. J. The Inst. Eng. (India) (2020). https://doi.org/10.1007/s40031-020-00488-z

    Article  Google Scholar 

  64. I. Saini, D. Singh, A. Khosla, QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases. J Adv Res. 4(4), 331–344 (2013)

    Article  Google Scholar 

  65. R.J. Martis, C. Chakraborty, A.K. Ray, A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. J. Patt. Reco. 42(11), 2979–2988 (2009)

    Article  MATH  Google Scholar 

  66. S Nikan, FG Sridhar, and M Bauer 2017 Pattern Recognition Application in ECG Arrhythmia Classification. In: Proceedings of the 10th Int Joint conference on Biomedical Engineering Systems and Technologies (BIOSTEC)

  67. Y. Kaya, H. Pehlivan, M.E. Tenekeci, Effective ECG beat classification using higher order statistic features and genetic feature selection. J. Biomed. Res. 28, 7594–7603 (2017)

    Google Scholar 

  68. Y. Kaya, H. Pehlivan, Classification of premature ventricular contraction in ECG. Int. J. Adv. Comput. Sci. Appl. 6(7), 34–40 (2015)

    Google Scholar 

  69. B. Fatimah, P. Singh, A. Singhal, R.B. Pachori, Detection of apnea events from ECG segments using Fourier Decomposition Method. Biomed. Signal Process. Control 61, 102005 (2020). https://doi.org/10.1016/j.bspc.2020.102005

    Article  Google Scholar 

  70. M. Elgendi, B. Eskofier, S. Dokos, D. Abbott, Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems. PLoS ONE 9(1), e84018 (2014). https://doi.org/10.1371/journal.pone.0084018

    Article  Google Scholar 

  71. W. Xingyuan, M. Juan, Wavelet-based hybrid ECG compression technique. Analog Integr Circ Sig Process 59(3), 301–308 (2009)

    Article  Google Scholar 

  72. M. Elgendi, M. Jonkman, F.D. Boer, Improved QRS detection algorithm using dynamic thresholds. Int. J. Hybrid Inf Technol. 2(1), 65–80 (2009)

    Google Scholar 

  73. M.C.M. Helen et al., Changes in scale-invariance property of electrocardiogram as a predictor of hypertension. Int. J. Med. Eng. Inform. (IJMEI) 12(3), 228–236 (2020)

    Google Scholar 

  74. F. Mokeddem et al., Study of murmurs and their impact on the heart variability. Int. J. Med. Eng. Inform. (IJMEI) 12(3), 291–301 (2020)

    Google Scholar 

  75. A. Giorgio et al., Improving ECG signal denoising using wavelet transform for the prediction of malignant arrhythmias. Int. J. Med. Eng. Inform. 12(2), 135–150 (2020)

    Google Scholar 

  76. S. Mukherjee et al., Malignant melanoma detection using multi-layer preceptron with visually imperceptible features and PCA components from Med-Node dataset. Int. J. Med. Eng. Inform. (IJMEI) 12(2), 151–168 (2020)

    Google Scholar 

  77. M. Mostafi et al., Discrimination of signals phonocardiograms by using SNR report. Int. J. Med. Eng. Inform. (IJMEI) 11(4), 386–403 (2019)

    Google Scholar 

  78. H. Dasgupta, Human age recognition by electrocardiogram signal based on artificial neural network. Sens. Imag. 17(4), 1–15 (2016)

    Google Scholar 

  79. V Gupta, et al 2020 Attractor plot as an emerging tool in ECG signal processing for improved health informatics. International Conference on Future Technologies 2020 (ICOFT 2020) in Manufacturing, Automation, Design and Energy (MADE@NITPY), National Institute of Technology Puducherry, Karaikal

  80. M. Elgendi, Fast QRS detection with an optimized knowledge-based method: Evaluation on 11 standard ECG databases. PLoS ONE 8(9), e73557 (2013). https://doi.org/10.1371/journal.pone.0073557

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Mittal, M., Mittal, V. et al. A novel feature extraction-based ECG signal analysis. J. Inst. Eng. India Ser. B 102, 903–913 (2021). https://doi.org/10.1007/s40031-021-00591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-021-00591-9

Keywords

Navigation