Skip to main content
Log in

Numerical Modelling of Wire-EDM for Predicting Erosion Rate of Silicon

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Recently, a lot of work is carried out in photovoltaic industry for slicing Si ingots using non-conventional technique like wire-EDM apart from conventional techniques like inner diameter saw and multi-wire saw. It is an emerging technology in field of Si wafer slicing and has a potential to be cost efficient. It reduces the kerf-loss and produces crack-free Si wafers. In general, the process of Si wafer cutting using wire-EDM is less understood due to its complex nature. In this work, the complex phenomena like formation of plasma channel, melting and erosion of Si material has been modelled mathematically. Further, the effect of input energy parameters like current, open voltage and pulse on-time on plasma and plasma-ingot interface temperature has been studied. The model is further extended along the length of the wire to evaluate the erosion depth and rate. The effect of process parameters on erosion depth and rate was validated experimentally. The model considers variation in material removal through the ‘plasma flushing efficiency’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

J :

Current density

E p :

Electric field at micro-peak

\(\emptyset\) :

Work function of material

β :

Field enhancement factor

d :

Interelectrode gap

a :

Radius of micro-peak

I:

Pulse current

N :

Molecules per unit volume

λ :

Heat of vaporization per molecule

k :

Boltzmann constant

K :

Coefficient of thermal conductivity

T :

Temperature

σ :

Stefen–Boltzmann constant

m :

Mass of a molecule of dielectric

T 0 :

Ambient temperature

T sat :

Saturation temperature

T nuc :

Nucleation temperature

T p :

Plasma temperature

T e :

Plasma electron temperature

T on :

Pulse on time

T off :

Pulse off time

T int :

Plasma-ingot interface temperature

T w :

Initial temperature of ingot

ρ :

Density of dielectric liquid

ρ(l):

Liquid state density

ρ(m):

Meta-state density

ρ av :

Average density

h fg :

Heat of vaporization

r t :

Tip radius of micro-peak

R wire :

Wire radius

C p (l):

Liquid phase heat capacity

τ growth :

Plasma growth time

R p :

Plasma radius

\(\varGamma_{e}\) :

Electrons flux to anode

MFP :

Mean free path of electron

σ si :

Conductivity of silicon

m e :

Electron mass

v f :

Drift velocity of electron

n si :

Electron density of silicon

P anode :

Flux towards anode

n d :

Number of divisions of wire

\(\dot{m}_{sil}\) :

Mass of silicon

\(L_{f,Sil}\) :

Latent heat of silicon

References

  1. A. Madan, Flexible solar cells and stable high-efficiency four-terminal solar cells using thin-film silicon technology. Mater. Manuf. Process. 22, 412 (2007)

    Article  Google Scholar 

  2. M.T. Yan, H.T. Chien, Monitoring and control of the micro wire-EDM process. Int. J. Mach. Tools Manuf 47, 148 (2007)

    Article  Google Scholar 

  3. W. Peng, Y. Liao, Study of electrical discharge machining technology for slicing silicon ingots. J. Mater. Process. Technol. 140, 274 (2003)

    Article  Google Scholar 

  4. F.V. Soneys, R. Dijik, Investigations of EDM operations by means of thermo-mathematical model. Ann. CIRP 20(1), 35 (1971)

    Google Scholar 

  5. W.L. Van Dijck, F.S. Dutre, Heat conduction model for the calculation of the volume of molten metal in electric discharges. J. Phys. D Appl. Phys. 7(6), 899 (1974)

    Article  Google Scholar 

  6. S.T. Tariq, P.C. Pandey, Analysis and modelling of EDM parameters. Precis. Eng. 4, 215 (1982)

    Article  Google Scholar 

  7. D.D. DiBitonto, P.T. Eubank, M.R. Patel, M.A. Barrufet, Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J. Appl. Phys. 66, 4095 (1989)

    Article  Google Scholar 

  8. M.R. Patel, M.A. Barrufet, P.T. Eubank, D.D. DiBitonto, Theoretical models of the electrical discharge machining process. II. The anode erosion model. J. Appl. Phys. 66, 4104 (1989)

    Article  Google Scholar 

  9. P.T. Eubank, M.R. Patel, M.A. Barrufet, B. Bozkurt, Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. J. Appl. Phys. 73, 7900 (1993)

    Article  Google Scholar 

  10. S. Dhanik, S.S. Joshi, Modeling of a single resistance capacitance pulse discharge in micro-electro discharge machining. J. Manuf. Sci. Eng. 127, 759 (2005)

    Article  Google Scholar 

  11. S. Das, S.S. Joshi, Modeling of spark erosion rate in microwire-EDM. Int. J. Adv. Manuf. Technol. 48, 581 (2009)

    Article  Google Scholar 

  12. S. Banerjee, B.V.S.S.S. Prasad, P.K. Mishra, A simple model to estimate the thermal loads on an EDM wire electrode. J. Mater. Process. Technol. 39, 305 (1993)

    Article  Google Scholar 

  13. Y.F. Luo, An energy-distribution strategy in fast-cutting wire EDM. J. Mater. Process. Technol. 55, 380 (1995)

    Article  Google Scholar 

  14. S. Saha, M. Pachon, A. Ghoshal, M.J. Schulz, Finite element modeling and optimization to prevent wire breakage in electro-discharge machining. Mech. Res. Commun. 31, 451 (2004)

    Article  Google Scholar 

  15. M. Kildemo, S. Calatroni, M. Taborelli, Breakdown and field emission conditioning of Cu, Mo, and W. Phys. Rev. Spec. Top. Accel. Beams 7, 092003 (2004)

    Article  Google Scholar 

  16. E.M. Williams, J.B. Woodford, Electronic considerations in the theory and design of electric spark machine tools. IRE Trans. Ind. Electron. PGIE-2, 78 (1955)

    Article  Google Scholar 

  17. J.R. Roth, Industrial Plasma Engineering: Volume 2—Applications to Nonthermal Plasma Processing (CRC Press, FL, USA, 2001)

  18. L. Weber, E. Gmelin, Transport properties of silicon. Appl. Phys. A Solids Surf. 53, 136 (1991)

    Article  Google Scholar 

  19. S. Datta, S. Mahapatra, Modeling, simulation and parametric optimization of wire EDM process using response surface methodology coupled with grey-Taguchi technique. Int. J. Eng. Sci. Technol. 2, 162 (2010)

    Article  Google Scholar 

  20. M. Shabgard, R. Ahmadi, M. Seyedzavvar, S. Nadimi, B. Oliaei, Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process. Int. J. Mach. Tools Manuf 65, 79 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a revised and expanded version of the original paper entitled “Modelling of Wire EDM slicing process for Silicon” which was presented at “Proceedings of the 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), during December 12–14, 2014, IIT Guwahati, India”. The authors wish to acknowledge financial support for this work from National Centre for Photovoltaic Research and Education (NCPRE), IIT Bombay, funded by MNRE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhas Sitaram Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, K., Sharma, G., Dongre, G. et al. Numerical Modelling of Wire-EDM for Predicting Erosion Rate of Silicon. J. Inst. Eng. India Ser. C 98, 63–73 (2017). https://doi.org/10.1007/s40032-016-0237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-016-0237-x

Keywords

Navigation