Skip to main content

Advertisement

Log in

Exergy Analyses of Fabricated Compound Parabolic Solar Collector with Evacuated Tubes at Different Operating Conditions: Indore (India)

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In this research work, compound parabolic solar collector (CPC) with evacuated tubes is fabricated. Main benefit of CPC is that there is no requirement of solar tracking system. With fabricated CPC; outlet temperatures of flowing fluid, instantaneous efficiencies, useful heat gain rates and inlet exergies (with and without considering Sun’s cone angle) are experimentally found. Observations are taken at different time intervals (1200, 1230, 1300, 1330 and 1400 h), mass flow rates (1.15, 0.78, 0.76, 0.86 and 0.89 g/s), ambient temperatures and with various dimensions of solar collector. This research work is concluded as; maximum instantaneous efficiency is 69.87% which was obtained with 0.76 g/s flow rate of water at 1300 h and 42°C is the maximum temperature difference which was also found at same time. Maximum inlet exergies are 139.733 and 139.532 kW with and without considering Sun’s cone angle at 1300 h, respectively. Best thermal performance from the fabricated CPC with evacuated tubes is found at 1300 h. Maximum inlet exergy is 141.365 kW which was found at 1300 h with 0.31 m aperture width and 1.72 m absorber pipe length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Aea :

Effective aperture area, m2

Asa :

Surface area of absorber pipe, m2

AF:

Absorbed flux, W/m2

Baperture :

Aperture width, m

Cp :

Specific heat for flowing fluid, J/kg K

D0 :

Outer diameter of absorber pipe, m

Ibrb :

Instantaneous/hourly beam radiation on a surface, W/m2

Lpipe :

Characteristic length of pipe, m

mfluid :

Mass flow rate of flowing fluid, kg/s

Qr :

Heat transfer rate, W

t1, t2 :

Inlet and outlet fluid temperatures, K

t5 :

Ambient temperature, K

α:

Absorbtivity of the pipe material

γ:

Intercept factor

ηinst :

Instantaneous efficiency, %

ρ:

Specular reflectivity on the concentrator surface

τ:

Transmissivity of the pipe material

φ:

Sun’s cone angle, degree

References

  1. A.A. Ghoneim, N. Fisch, A.S.A. Ammar, E. Hahne, Investigation of evacuated tube collectors. Int. J. Sol. Energy 16(1), 15–25 (1994). https://doi.org/10.1080/01425919408914263

    Article  Google Scholar 

  2. A.A. Hachicha, I. Rodriguez, R. Capdevila, A. Oliva, Heat transfer analysis and numerical simulation of a parabolic trough solar collector. Appl. Energy 111, 581–592 (2013). https://doi.org/10.1016/j.apenergy.2013.04.067

    Article  Google Scholar 

  3. A.E. Kabeel, M.M.K. Dawood, A.I. Shehata, Augmentation of thermal efficiency of the glass evacuated solar tube collector with coaxial heat pipe with different refrigerants and filling ratio. Energy Convers. Manag. 138, 286–298 (2017). https://doi.org/10.1016/j.enconman.2017.01.048

    Article  Google Scholar 

  4. A. Geete, S. Kothari, R. Sahu, P. Likhar, A. Saini, A. Singh, Experimental analysis on fabricated parabolic solar collector with various flowing fluids and pipe materials. Int. J. Renew. Energy Res. 6(4), 1454–1463 (2016)

    Google Scholar 

  5. A. Geete, R. Sharma, Experimental exergy analyses on fabricated parabolic solar collector with/without preheater and different collector materials. Int. J. Ambient Energy (2018). https://doi.org/10.1080/01430750.2017.1422144

    Google Scholar 

  6. B.K. Naik, A. Varshney, P. Muthukumar, C. Somayaji, Modelling and performance analysis of U-type evacuated tube solar collector using different working fluids. Energy Procedia 90, 227–237 (2016). https://doi.org/10.1016/j.egypro.2016.11.189

    Article  Google Scholar 

  7. D. Pradhan, D. Mitra, S. Neogi, Thermal performance of a heat pipe embedded evacuated tube collector in a compound parabolic concentrator. Energy Procedia 90, 217–226 (2016). https://doi.org/10.1016/j.egypro.2016.11.188

    Article  Google Scholar 

  8. E. Bellos, D. Korres, C. Tzivanidis, K.A. Antonopoulos, Design, simulation and optimization of a compound parabolic collector. Sustain. Energy Technol. Assess. 16, 53–63 (2016). https://doi.org/10.1016/j.seta.2016.04.005

    Google Scholar 

  9. E. Zambolin, D.D. Col, Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 84(8), 1382–1396 (2010). https://doi.org/10.1016/j.solener.2010.04.020

    Article  Google Scholar 

  10. H. Zhai, Y.J. Dai, J.Y. Wu, R.Z. Wang, L.Y. Zhang, Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens. Energy Convers. Manag. 51(1), 48–55 (2010). https://doi.org/10.1016/j.enconman.2009.08.018

    Article  Google Scholar 

  11. J.A. Alfaro-Ayala, G. Martinez-Rodriguez, M. Picon-Nunez, A.R. Uribe-Ramirez, A. Gallegos-Munoz, Numerical study of a low temperature water-in-glass evacuated tube solar collector. Energy Convers. Manag. 94, 472–481 (2015). https://doi.org/10.1016/j.enconman.2015.01.091

    Article  Google Scholar 

  12. K.R. Kumar, K.S. Reddy, Thermal analysis of solar parabolic trough with porous disc receiver. Appl. Energy 86(9), 1804–1812 (2009). https://doi.org/10.1016/j.apenergy.2008.11.007

    Article  Google Scholar 

  13. K. Shridhar, T. Choudhary, Experimental investigation and fabrication of an evacuate tube solar collector. Int. J. Sci. Res. 5(3), 1166–1172 (2016)

    Google Scholar 

  14. L. Gill, J. MacMohan, K. Ryan, The performance of an evacuated tube solar hot water system in a domestic house throughout a year in a northern maritime climate (Dublin). Sol. Energy 137, 261–272 (2016). https://doi.org/10.1016/j.solener.2016.07.052

    Article  Google Scholar 

  15. L. Jiang, B. Widyolar, R. Winston, Characterization of novel mid-temperature CPC solar thermal collectors, in International Conference on Solar Heating and Cooling for Buildings and Industry, SHC 2014, Energy Procedia, vol. 70, pp. 65–70 (2015). https://doi.org/10.1016/j.egypro.2015.02.098

  16. M.A. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Progress and latest developments of evacuated tube solar collectors. Renew. Sustain. Energy Rev. 51(9), 1038–1054 (2015). https://doi.org/10.1016/j.rser.2015.07.016

    Article  Google Scholar 

  17. N. Mehla, A. Yadav, Experimental analysis of thermal performance of evacuated tube solar air collector with phase change material for sunshine and off-sunshine hour. Int. J. Ambient Energy 38(2), 130–145 (2017). https://doi.org/10.1080/01430750.2015.1074612

    Article  Google Scholar 

  18. R.J. Xu, X.H. Zhang, R.X. Wang, S.H. Xu, H.S. Wang, Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator. Energy Convers. Manag. 148, 68–77 (2017). https://doi.org/10.1016/j.enconman.2017.04.045

    Article  Google Scholar 

  19. R. Radhakrishnan, N.M. Bhatt, Review of evacuated glass tube based solar collectors for various fluid heating applications. Int. J. Sci. Res. Dev. 3(3), 703–706 (2015)

    Google Scholar 

  20. R. Sharma, A. Geete, Experimental analyses on parabolic solar collector at various operating conditions. Univ. J. Mech. Eng. 5(2), 25–34 (2017). https://doi.org/10.13189/ujme.2017.050201

    Article  Google Scholar 

  21. R.V. Padilla, G. Demirkaya, D.Y. Goswami, E. Stefanakos, M.M. Rahman, Heat transfer analysis of parabolic trough solar receiver. Appl. Energy 88(12), 5097–5110 (2011). https://doi.org/10.1016/j.apenergy.2011.07.012

    Article  Google Scholar 

  22. T.T. Zhu, Y.H. Zhao, Y.H. Diao, F.F. Li, Z.H. Quan, Experimental investigation and performance evaluation of a vacuum tube solar air collector based on micro heat pipe arrays. J. Clean. Prod. 142(4), 3517–3526 (2017). https://doi.org/10.1016/j.jclepro.2016.10.116

    Article  Google Scholar 

  23. V.P. Shah, N.M. Bhatt, Review on evacuated glass tube based solar liquid heaters. Int. J. Eng. Dev. Res. 2(2), 2727–2733 (2014)

    Google Scholar 

  24. W. Zheng, L. Yang, H. Zhang, S. You, C. Zhu, Numerical and experimental investigation on a new type of compound parabolic concentrator solar collector. Energy Convers. Manag. 129, 11–22 (2016). https://doi.org/10.1016/j.enconman.2016.10.013

    Article  Google Scholar 

  25. S.P. Sukhatme, Solar Energy (Tata Mcgraw-Hill publishing company limited, New Delhi, 2006)

    Google Scholar 

  26. R. Petela, Exergy of undiluted thermal radiation. Sol. Energy 76(6), 469–488 (2003). https://doi.org/10.1016/S0038-092X(03)00226-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Geete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geete, A., Dubey, A., Sharma, A. et al. Exergy Analyses of Fabricated Compound Parabolic Solar Collector with Evacuated Tubes at Different Operating Conditions: Indore (India). J. Inst. Eng. India Ser. C 100, 455–460 (2019). https://doi.org/10.1007/s40032-018-0455-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-018-0455-5

Keywords

Navigation