Skip to main content
Log in

Efficacy of Semi-active Absorber for Controlling Self-excited Vibration

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

It is shown that a passive vibration absorber can completely quench the self-excited vibration only for certain parameter values, like the strength of instability in the primary system. The present paper numerically explores the performance of semi-active vibration absorber in controlling self-excited vibration. In the proposed semi-active scheme, the damping force of the absorber is switched between the maximum and the minimum values according to certain control logics. Four different control strategies are considered—these are on–off velocity-based ground-hook control (VBG), on–off displacement-based ground-hook control (DBG), continuous VBG and continuous DBG. Numerical simulations are performed in the MATLAB Simulink to explore the efficacy of the control strategies. It is shown that the on–off DBG control is superior to all other control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Blanchard, L.A. Bergman, A.F. Vakakis, Passive suppression mechanisms in laminar vortex-induced vibration of a sprung cylinder with a strongly nonlinear dissipative oscillator. J. Appl. Mech. (2017). https://doi.org/10.1115/1.4036942

    Article  Google Scholar 

  2. H.L. Dai, A. Abdelkef, L. Wang, Vortex-induced vibration mitigation through nonlinear energy sink. Nonlinear Sci. Numer. Simul. 42, 22–36 (2017)

    Article  Google Scholar 

  3. Z.-Q. Lu, J.-M. Li, H. Ding, L.-Q. Chen, Analysis and suppression of self-excited vibration via internal stiffness nonlinearity. Adv. Mech. Eng. 9(12), 1–7 (2017)

    Article  Google Scholar 

  4. G. Habib, G. Kerschen, Suppression of limit cycle oscillations using the nonlinear tuned vibration absorber. Proc. R. Soc. A (2015). https://doi.org/10.1098/rspa.2014.0976

    Article  MATH  Google Scholar 

  5. I. Kirrou, L. Mokn, M. Belhaq, Effect of fast frequency excitation on tower oscillation under turbulent wind flow. MATEC Web Conf. (2012). https://doi.org/10.1051/matecconf/20120110009

    Article  Google Scholar 

  6. A. Fahsi, Effect of fast harmonic excitation on frequency-locking in a van der Pol–Mathieu–Duffing oscillator. Commun. Nonlinear Sci. Numer. Simul. 14, 244–253 (2009)

    Article  MathSciNet  Google Scholar 

  7. S. Sah, M. Belhaq, Control of a delayed limit cycle using the tilt angle of fast excitation. J. Vib. Control 10(2), 175–182 (2011)

    Article  MathSciNet  Google Scholar 

  8. J. Warminski, M.P. Cartmell, A. Mituraand, M. Bochenski, Active vibration control of a nonlinear beam with self- and external excitations. Shock Vib. 20, 1033–1047 (2013)

    Article  Google Scholar 

  9. L. Jun, L. Xiaobin, H. Hongxing, Active nonlinear saturation-based control for the free vibration of the self-excited plant. Nonlinear Sci. Numer. Simul. 15, 1071–1079 (2010)

    Article  MathSciNet  Google Scholar 

  10. T. Vromen, N. Van de Wouw, A. Doris, P. Astrid, H. Nijmeijer, Nonlinear output-feedback control of torsional vibrations in drillstring systems. Int. J. Robust Nonlinear Control (2017). https://doi.org/10.1002/rmc.3759

    Article  MATH  Google Scholar 

  11. S. Chatterjee, On the efficacy of an active absorber with internal state feedback for controlling self-excited oscillations. J. Sound Vib. 330, 1285–1299 (2011)

    Article  Google Scholar 

  12. S. Dehkordi, An active control method to reduce friction Induced vibration caused by negative damping. J Mekanikal 29, 19–34 (2009)

    Google Scholar 

  13. T.G. Ritto, M.G. Tehrani, Active control of stick-slip torsional vibrations in drill-strings. J. Vib. Control (2018). https://doi.org/10.1177/1077546318774240

    Article  Google Scholar 

  14. S. Chatterjee, A.K. Mandal, On the efficacy of an inertial active device with internal time-delayed feedback for controlling self-excited oscillations. J. Sound Vib. 329, 2435–2449 (2010)

    Article  Google Scholar 

  15. R.H. Suarez, H. Puebla, R.A. Lopez, E.H. Martinez, An integral high-order sliding mode control approach for stick-slip suppression in oil drillstrings. Pet. Sci. Technol. 27, 788–800 (2009)

    Article  Google Scholar 

  16. J.H. Koo, M. Ahmadian, M. Setareh, T.M. Murray, In search of suitable control methods for semi-active tuned vibration absorbers. J. Vib. Control 10(2), 163–174 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Averaging is employed to system equations (Eqs. (1) and (2)). To this end, the following similarity transformation is defined:

$$\left\{ {\begin{array}{*{20}c} {y_{\text{p}} } \\ {y_{\text{a}} } \\ \end{array} } \right\} = \varPhi \left\{ {\begin{array}{*{20}c} {z_{1} } \\ {z_{2} } \\ \end{array} } \right\},$$
(22)

where \(\varPhi = \left[ {\begin{array}{*{20}c} 1 & 1 \\ {\rho_{1} } & {\rho_{2} } \\ \end{array} } \right]\) with \(\rho_{i} = \frac{{1 + \mu \varOmega_{\text{a}}^{2} + \omega_{i}^{2} }}{{\mu \varOmega_{\text{a}}^{2} }}\) and

$$\omega_{i} = \left[ {\frac{{(1 + \mu \varOmega_{\text{a}}^{2} + \varOmega_{\text{a}}^{2} ) \pm \sqrt {(1 + \mu \varOmega_{\text{a}}^{2} + \varOmega_{\text{a}}^{2} )^{2} - 4\varOmega_{\text{a}}^{2} } }}{2}} \right]^{1/2}$$

Using the transformation defined in Eq. (16), Eqs. (3) and (4) are transformed to

$$\ddot{z}_{i} + \omega^{2} z_{i} = f_{i} ,\quad i{ = 1,}\; 2$$
(23)

where

$$f_{1} = (\omega^{2} - \omega_{1}^{2} )z_{1} - (c_{11} \dot{z}_{1} + c_{12} \dot{z}_{2} ) - \frac{{\rho_{2} e_{3} }}{{\rho_{2} - \rho_{1} }}(\dot{z}_{1} + \dot{z}_{2} )^{3}$$

and

$$f_{2} = (\omega^{2} - \omega_{2}^{2} )z_{2} - (c_{21} \dot{z}_{1} + c_{22} \dot{z}_{2} ) + \frac{{\rho_{1} e_{3} }}{{\rho_{2} - \rho_{1} }}(\dot{z}_{1} + \dot{z}_{2} )^{3}$$

with

$$C_{11} = \frac{{\rho_{2} (2\mu \xi_{\text{a}} \varOmega_{\text{a}} + h - 2\mu \xi_{\text{a}} \varOmega_{\text{a}} \rho_{1} ) - ( - 2\xi_{\text{a}} \varOmega_{\text{a}} + 2\xi_{\text{a}} \varOmega_{\text{a}} \rho_{1} )}}{{(\rho_{2} - \rho_{1} )}},$$
$$C_{12} = \frac{{(\rho_{2} (2\mu \xi_{\text{a}} \varOmega_{\text{a}} + h - 2\mu \xi_{\text{a}} \varOmega_{\text{a}} \rho_{2} ) - ( - 2\xi_{\text{a}} \varOmega_{\text{a}} + 2\xi_{\text{a}} \varOmega_{\text{a}} \rho_{2} )}}{{(\rho_{2} - \rho_{1} )}},$$
$$C_{21} = \frac{{( - \rho_{1} (2\mu \xi_{\text{a}} \varOmega_{\text{a}} + h - 2\mu \xi_{\text{a}} \varOmega_{\text{a}} \rho_{1} ) + ( - 2\xi_{\text{a}} \varOmega_{\text{a}} + 2\xi_{\text{a}} \varOmega_{\text{a}} \rho_{1} )}}{{(\rho_{2} - \rho_{1} )}},$$

and

$$C_{22} = \frac{{ - \rho_{1} (2\mu \xi_{\text{a}} \varOmega_{\text{a}} + h - 2\mu \xi_{\text{a}} \varOmega_{\text{a}} \rho_{2} ) + ( - 2\xi_{\text{a}} \varOmega_{\text{a}} + 2\xi_{\text{a}} \varOmega_{\text{a}} \rho_{2} )}}{{(\rho_{2} - \rho_{1} )}}.$$

Assume the solutions of Eq. (23) as

$$z_{i} (\tau ) = A_{i} (\tau )\cos (\omega \tau + \theta_{i} (\tau ))$$
(24)

where Ai and θi are slowly varying functions of time and ω is the frequency of oscillation of the system.

Assume

$$f_{i} = \varepsilon \tilde{f}_{i} ,\quad \varepsilon { < < 1,}$$
(25)

One finally obtains the slow-flow equations as

$$\dot{A}_{i} = - \frac{\varepsilon }{2\pi }\int_{0}^{{{\raise0.7ex\hbox{${2\pi }$} \!\mathord{\left/ {\vphantom {{2\pi } \omega }}\right.\kern-0pt} \!\lower0.7ex\hbox{$\omega $}}}} {\tilde{f}_{i} \sin (\omega \tau + \theta_{i} )} {\text{d}}\tau$$
(26)

and

$$A_{i} \dot{\theta }_{i} = - \frac{\varepsilon }{2\pi }\int_{0}^{{{\raise0.7ex\hbox{${2\pi }$} \!\mathord{\left/ {\vphantom {{2\pi } \omega }}\right.\kern-0pt} \!\lower0.7ex\hbox{$\omega $}}}} {\tilde{f}_{i} \cos (\omega \tau + \theta_{i} )} {\text{d}}\tau$$
(27)

Equations (26) and (27) can be finally recast as

$$\dot{A}_{1} = \varphi_{1} (A_{1} ,A_{2} ,\theta ,\omega ),$$
(28)
$$\dot{A}_{2} = \varphi_{2} (A_{1} ,A_{2} ,\theta ,\omega ),$$
(29)
$$\dot{\theta }_{1} = \varphi_{3} (A_{1} ,A_{2} ,\theta ,\omega \dot{)},$$
(30)
$$\dot{\theta }_{2} = \varphi_{4} (A_{1} ,A_{2} ,\theta ,\omega ),$$
(31)

The steady-state solutions of Eqs. (28)–(31) can be obtained by solving the following equations:

$$\varphi_{i} (A_{1} ,A_{2} ,\theta ,\omega ) = 0,\quad i{\text{ = 1 to 4}}$$
(32)

Solving Eqs. (1) and (2), one obtains A1, A2, θ and ω. Now transforming back to the physical coordinates, one obtains the amplitude of oscillation of the primary mass and absorber mass, respectively, as

$$A_{\text{p}} = \sqrt {A_{1}^{2} + A_{2}^{2} + 2A_{1} A_{2} \cos \theta }$$
(33)

and

$$A_{\text{a}} = \sqrt {\rho_{1}^{2} A_{1}^{2} + \rho_{2}^{2} A_{2}^{2} + 2A_{1} A_{2} \rho_{1} \rho_{2} \cos \theta }$$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, J., Chatterjee, S. Efficacy of Semi-active Absorber for Controlling Self-excited Vibration. J. Inst. Eng. India Ser. C 101, 97–103 (2020). https://doi.org/10.1007/s40032-019-00521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-019-00521-1

Keywords

Navigation