Skip to main content

Advertisement

Log in

Technique for Evaluating the Strength of Composite Blades

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

The paper presents a technique for designing and investigating the strength of a composite blade on an example of a mine ore ventilation fan, considering aerodynamic loads acting on a blade airfoil surface. The technique is based on the use of the finite element method in a combination with the theory of multilayer shells to determine the dynamics and strength of the composite airfoil, as well as the methods of the computational fluid dynamics, namely the Reynolds equations, for modeling an air movement in a fan passage to determine aerodynamic loads. A static strength estimation is based on an application of the Hashin strength criterion. An analysis of the results of strength calculations considering aerodynamic forces indicates a necessity of accounting them for thin-walled composite elements. A possibility of varying a thickness of the shell and taking it into account using the presented method allows to achieve an optimal ratio of strength and weight indices. A buckling analysis of the composite shell under an action of complex loading, based on methods of the linear stability theory, as well as calculations of natural frequencies and natural frequencies with regard to a prestressed state from an action of static loads, completes the technique. The results of the research allow to conclude on an applicability of the presented methodology for analyzing the strength of composite blades and an efficiency of the proposed design of the airfoil, as well as a possibility of its use to create real rotary machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.I. Chortis, Structural analysis of composite wind turbine blades (Springer, Berlin, 2013), p. 239

    Book  Google Scholar 

  2. A. Rusanov, G. Martynenko, K. Avramov, V. Martynenko, in IEEE 3rd International Conference on Intelligent Energy and Power Systems (2018)

  3. J.S. Sidhu, G.S. Lathkar, S.B. Sharma, J. Inst. Eng. (India) Ser. C 100, 283–288 (2019)

    Article  Google Scholar 

  4. V.L. Jagannatha Guptha, R.S. Sharma, J. Inst. Eng. (India) Ser. C 100, 75–81 (2017)

    Article  Google Scholar 

  5. P.B. Rao, A.R. Krishna, K. Ramji, A.S. Devi, J. Inst. Eng. (India) Ser. C 96, 381–388 (2015)

    Article  Google Scholar 

  6. A. Mandal, C. Ray, S. Haldar, J. Inst. Eng. (India) Ser. C (2019). https://doi.org/10.1007/s40032-019-00537-7

    Article  Google Scholar 

  7. V.G. Martynenko, G.I. Lvov, J. Reinf. Plast. Compos. 36, 1790–1801 (2017)

    Article  Google Scholar 

  8. V.G. Martynenko, Mech. Mech. Eng. 21, 389–413 (2017)

    Google Scholar 

  9. N.G. Vasjaliya, S.N. Gangadharan, in Proceedings of the 10th World Congress on Structural and Multidisciplinary Optimization, vol. 21 (2013)

  10. J. Chen, Q. Wang, WZh Shen, X. Pang, S. Li, X. Guo, Mater. Des. 46, 247–255 (2013)

    Article  Google Scholar 

  11. M. Grujicic, G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, M. Ozen, J. Mater. Eng. Perform. 19, 8 (2010)

    Google Scholar 

  12. W. Hua, D. Park, D.H. Choi, Eng. Optim. 45, 12 (2013)

    Google Scholar 

  13. A.D. Monte, M.R. Castelli, E. Benini, Compos. Struct. 106, 362–373 (2013)

    Article  Google Scholar 

  14. F. Song, Y. Ni, Z. Tan, Proc. Eng. 16, 369–375 (2011)

    Article  Google Scholar 

  15. C. Kong, J. Bang, Y. Sugiyama, Energy 30, 2101–2114 (2005)

    Article  Google Scholar 

  16. R. Rafiee, M. Tahani, M. Moradi, J. Wind Eng. Ind. Aerodyn. 151, 60–69 (2016)

    Article  Google Scholar 

  17. J. Yang, Ch. Peng, J. Xiao, J. Zeng, S. Xing, J. Jin, H. Deng, Compos. Struct. 97, 15–29 (2013)

    Article  Google Scholar 

  18. A. Gangele, S. Ahmed, J. Inst. Eng. (India) Ser. C 94(3), 225–228 (2013)

    Article  Google Scholar 

  19. D. Garinis, M. Dinulović, B. Rašuo, FME Trans. 40, 63–68 (2012)

    Google Scholar 

  20. H.J. Lin, J.J. Lin, T.J. Chuang, J. Reinf. Plast. Compos. 40, 1791–1807 (2005)

    Article  Google Scholar 

  21. H.J. Lin, J.F. Tsai, J. Reinf. Plast. Compos. 27, 5 (2008)

    Article  Google Scholar 

  22. T. Murakami, H. Morita, K. Oikawa, IHI Eng. Rev. 47, 1 (2014)

    Google Scholar 

  23. R.S. Mazzawy, in Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air (2010)

  24. R.M. Coroneos, R.S.R. Gorla, Int. J. Turbojet Eng. 29, 3 (2012)

    Google Scholar 

  25. G. Schlichting, Boundary layer theory (Nauka, Moscow, 1974), p. 712. [in Russian]

    Google Scholar 

  26. V. Kollman (ed.), Methods for Calculating Turbulent Flows (Mir Publishers, Moscow, 1984), p. 463

    Google Scholar 

  27. R.V. Mises, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 4 (1913)

  28. R. Hill, Proc. R. Soc. A Math. Phys. Eng. Sci. 193, 1033 (1948)

    Google Scholar 

  29. O. Hoffman, J. Compos. Mater. 1, 2 (1967)

    Article  Google Scholar 

  30. S.W. Tsai, E.M. Wu, J. Compos. Mater. 5, 1 (1971)

    Article  Google Scholar 

  31. Z. Hashin, A. Rotem, J. Compos. Mater. 7, 448–464 (1973)

    Article  Google Scholar 

  32. Z. Hashin, J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  33. C. Davila, J. Navin, NASA Langley Research Center. Technical Report WU 23-719-55 (2003)

  34. C. Davila, P. Camanho, C. Rose, J. Compos. Mater. 39, 4 (2005)

    Article  Google Scholar 

  35. V.G. Martynenko, G.I. Lvov, Sci. Notes Tavrida Vernadsky Natl. Univ. Techn. Sci. Ser. 68, 6 (2018)

    Google Scholar 

  36. V.G. Martynenko, G.I. Lvov, Y.N. Ulianov, Polym. Polym. Compos. 27, 323–336 (2019)

    Google Scholar 

  37. S.N. Sukhinin, Applied Stability Problems for Multilayer Composite Shells (Fizmatlit, Moscow, 2010), p. 246. (in Russian)

    Google Scholar 

  38. J.-K. Sabonnadiere, J.-L. Coulomb, Finite-Element Method in CAD (Springer, New York, 1987), p. 194

    Book  Google Scholar 

  39. V.G. Martynenko, N.I. Hritsenko, J. Mech. Eng. 18, 4/1 (2015)

    Google Scholar 

  40. V.G. Martynenko, M.I. Hrytsenko, S.V. Mavrody, Bull. Natl. Techn. Univ. “KhPI” Ser. Dyn. Strength Mach. 13, 20–31 (2018)

    Google Scholar 

  41. M. SaiAshok, U. Koteswara Rao, Int. J. Eng. Dev. Res. 5, 4 (2017)

    Google Scholar 

  42. K.V. Frolova (ed.), Vibration in Technology. Handbook in 6 Volumes (Mashinostroyeniye, Moscow, 1981), p. 456

    Google Scholar 

Download references

Funding

The author received no financial support for the research, authorship and publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Martynenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynenko, V., Hrytsenko, M. & Martynenko, G. Technique for Evaluating the Strength of Composite Blades. J. Inst. Eng. India Ser. C 101, 451–461 (2020). https://doi.org/10.1007/s40032-020-00572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-020-00572-9

Keywords

Navigation