Skip to main content

Advertisement

Log in

Synthesis of mycogenic zinc oxide nanoparticles and preliminary determination of its efficacy as a larvicide against white grubs (Holotrichia sp.)

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

In the present study, the larvicidal efficacy of mycogenic zinc oxide nanoparticles (ZONPs) were tested against white grubs, a potent pest of sugarcane in western Uttar Pradesh (India). The ZONPs were synthesized using Aspergillus niger biomass and characterized using UV–Vis spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), dynamic light scattering (DLS) and Fourier transform infrared (FTIR). the parts per million (ppm) concentration of synthesized ZONPs was established by the inductively coupled plasma mass spectrometry (ICPMS) technique and several ppm dilutions were prepared to determine 50% lethal dose (LD50). The UV–Vis spectroscopy showed peaks at 240, 290, 340, and 380 nm, corresponding to ZONPs. The FESEM results also confirmed the synthesis of nano-sized particles. EDX analysis result showed the optical absorption peaks specific to ZONPs. The DLS result confirmed the synthesis of ZONPs with sizes ranging from 76.2 to 183.8 nm. The FTIR spectrum analysis confirmed the presence of various functional group interactions in the nanoparticle sample. The ZONPs were tested against the first instar larvae of white grubs. The LD50 was calculated to be 12.63 ppm which still needs to be validated for significance. In the near future, we are planning to establish the minimal lethal dosage of ZONPs to prepare effective larvicidal formulations against white grub infection with minimal toxicity to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Al-Dhabi, N., Valan Arasu, M.: Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials 8(7), 500 (2018)

    Google Scholar 

  2. Andrade-Ochoa, S., Sánchez-Aldana, D., Chacón-Vargas, K.F., Rivera-Chavira, B.E., Sánchez-Torres, L.E., Camacho, A.D., Nogueda-Torres, B., Nevárez-Moorillón, G.V.: Oviposition deterrent and larvicidal and pupaecidal activity of seven essential oils and their major components against Culex quinquefasciatus say (Diptera: Culicidae): synergism–antagonism effects. Insects 9(1), 25 (2018)

    Google Scholar 

  3. Anitha, V., Wightman, J., Rogers, D.J.: Management of white grubs (Coleoptera: Scarabaeidae) on groundnut in southern India. Int. J. Pest Manag. 51(4), 313–320 (2005)

    Google Scholar 

  4. Arciniegas-Grijalba, P.A., Patiño-Portela, M.C., Mosquera-Sánchez, L.P., Guerrero-Vargas, J.A., Rodríguez-Páez, J.E.: ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl. Nanosci. 7(5), 225–241 (2017)

    CAS  Google Scholar 

  5. Babu, M.Y., Janaki Devi, V., Ramakritinan, C.M., Umarani, R., Taredahalli, N., Kumaraguru, A.K.: Application of biosynthesized silver nanoparticles in agricultural and marine pest control. Curr. Nanosci. 10(3), 374–381 (2014)

    CAS  Google Scholar 

  6. Banumathi, B., Malaikozhundan, B., Vaseeharan, B.: Invitro acaricidal activity of ethnoveterinary plants and green synthesis of zinc oxide nanoparticles against Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 216, 93–100 (2016)

    CAS  Google Scholar 

  7. Bhawane, G.P., Gaikwad, S.M., Mamlayya, A.B., Aland, S.R.: Life cycle of Holotrichia karschi Brenske (Coleoptera: Scarabaeidae: Melolonthinae). Bioscan 6(3), 471–474 (2011)

    Google Scholar 

  8. Chandler, D., Bailey, A.S., Tatchell, G.M., Davidson, G., Greaves, J., Grant, W.P.: The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B 366(1573), 1987–1998 (2011)

    Google Scholar 

  9. Chikkanna, M.M., Neelagund, S.E., Rajashekarappa, K.K.: Green synthesis of Zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Appl. Sci. 1(1), 117 (2019)

    Google Scholar 

  10. Christian, P., Von der Kammer, F., Baalousha, M., Hofmann, T.: Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17(5), 326–343 (2008)

    CAS  Google Scholar 

  11. Dadmal, S.M., Khadakkar, S.: Revision of Holotrichia hope (Scarabaeidae: Melolonthinae) in different agro–climatic zones of Maharashtra (India). J. Ent. Zool. Study 2(3), 50–58 (2014)

    Google Scholar 

  12. Devi, T.R., Gayathri, S.: FTIR and FT-Raman spectral analysis of paclitaxel drugs. Int. J. Pharm. Sci. Rev. Res. 2(2), 106–110 (2010)

    Google Scholar 

  13. Dhoj, G.C.Y.: Microbial control of white grubs in Nepal: the way forward. J. Agric. Environ. 10, 134–142 (2009)

    Google Scholar 

  14. Dorcheh, S.K., Vahabi, K.: Biosynthesis of nanoparticles by fungi: large-scale production. Fungal Metabolites, pp. 1–20. Springer, Berlin (2016)

    Google Scholar 

  15. Erler, F., Ates, A.O.: Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. J. Insect Sci. 15(1), 44 (2015)

    Google Scholar 

  16. Evanoff Jr., D.D., Chumanov, G.: Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6(7), 1221–1231 (2005)

    CAS  Google Scholar 

  17. Ezealisiji, K.M., Siwe-Noundou, X., Maduelosi, B., Nwachukwu, N., Krause, R.W.M.: Green synthesis of zinc oxide nanoparticles using Solanum torvum (L.) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. Int. Nano Lett. 9(2), 99–107 (2019)

    CAS  Google Scholar 

  18. Fakhari, S., Jamzad, M., Kabiri Fard, H.: Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem. Lett. Rev. 12(1), 19–24 (2019)

    CAS  Google Scholar 

  19. Gandhi, P.R., Jayaseelan, C., Mary, R.R., Mathivanan, D., Suseem, S.R.: Acaricidal, pediculicidal and larvicidal activity of synthesized ZnO nanoparticles using Momordica charantia leaf extract against blood feeding parasites. Exp. Parasitol. 181, 47–56 (2017)

    CAS  Google Scholar 

  20. Getie, S., Belay, A., Chandra Reddy, A.R., Belay, Z.: Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications. J. Nanomedic. Nanotechnol. 8, 2 (2017)

    Google Scholar 

  21. Ghareib, M., Abdallah, W.E., Tahon, M.A., Hussein, M.: Eco-friendly approach for biosynthesis of zinc oxide nanoparticles using some soil fungi. Nano Sci. 7(3), 108–118 (2018)

    CAS  Google Scholar 

  22. Hao, E., Schatz, G.C.: Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120(1), 357–366 (2004)

    CAS  Google Scholar 

  23. Inglis, G.D., Goettel, M.S., Butt, T.M., Strasser, H.: Use of hyphomycetous fungi for managing insect pests. Fungi as biocontrol agents, pp. 23–69. Springer, Berlin (2001)

    Google Scholar 

  24. Jacob, S.P., Bharathkumar, R., Ashwathram, G.: Aspergillus niger mediated synthesis of ZnO nanoparticles and their antimicrobial and in vitro anticancerous activity. World J. Pharm. Res. 3(2), 3044–3054 (2014)

    Google Scholar 

  25. Jans, H., Liu, X., Austin, L., Maes, G., Huo, Q.: Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal. Chem. 81(22), 9425–9432 (2009)

    CAS  Google Scholar 

  26. Kalpana, V.N., Kataru, B.A.S., Sravani, N., Vigneshwari, T., Panneerselvam, A., Rajeswari, V.D.: Biosynthesis of zinc oxide nanoparticles using culture filtrates of aspergillus niger: antimicrobial textiles and dye degradation studies. OpenNano 3, 48–55 (2018)

    Google Scholar 

  27. Kheswa, N.: Development of beauveria brongniartii as a bio-Insecticide to control white grub (coleoptera: scarabaeidae) species attacking sugarcane in South Africa (Doctoral dissertation) (2016)

  28. Khlebtsov, N., Dykman, L.: Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40(3), 1647–1671 (2011)

    CAS  Google Scholar 

  29. Khooshe-Bast, Z., Sahebzadeh, N., Ghaffari-Moghaddam, M., Mirshekar, A.: Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta Agric. Slov. 107(2), 299–309 (2016)

    CAS  Google Scholar 

  30. Kirthi, A.V., Rahuman, A.A., Rajakumar, G., Marimuthu, S., Santhoshkumar, T., Jayaseelan, C., Velayutham, K.: Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol. Res. 109(2), 461–472 (2011)

    Google Scholar 

  31. Kumar, S.S., Venkateswarlu, P., Rao, V.R., Rao, G.N.: Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett. 3(1), 30 (2013)

    Google Scholar 

  32. la Rosa-García, D., Susana, C., Martínez-Torres, P., Gómez-Cornelio, S., Corral-Aguado, M.A., Quintana, P., Gómez-Ortíz, N.M.: Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical fruit. J. Nanomater. (2018). https://doi.org/10.1155/2018/3498527

    Article  Google Scholar 

  33. Maksymiv, I.: Pesticides: benefits and hazards. J. Vasyl Stefanyk Precarpathian Natl. Univ. 2(1), 70–76 (2015)

    Google Scholar 

  34. Malaikozhundan, B., Vinodhini, J.: Nanopesticidal effects of Pongamia pinnata leaf extract coated zinc oxide nanoparticle against the Pulse beetle, Callosobruchus maculatus. Mater. Today Commun. 14, 106–115 (2018)

    CAS  Google Scholar 

  35. Mane, P.B., Mohite, P.B.: Bioefficacy of different species of entomopathogenic fungi against white grub, Leucopholis lepidophora (Blanchard) infesting sugarcane in Maharashtra. Asian J. Bio. Sci. 9(2), 234–237 (2014)

    Google Scholar 

  36. Meruvu, H., Vangalapati, M., Chippada, S.C., Bammidi, S.R.: Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. J. Rasayan Chem 4(1), 217–222 (2011)

    CAS  Google Scholar 

  37. Mohan, A.C., Renjanadevi, B.: Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Proced. Technol. 24, 761–766 (2016)

    Google Scholar 

  38. Morejón, B., Pilaquinga, F., Domenech, F., Ganchala, D., Debut, A., Neira, M.: Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to Control Aedes aegypti L. (Diptera: Culicidae). J. Nanotechnol. (2018). https://doi.org/10.1155/2018/6917938

    Article  Google Scholar 

  39. Murugan, K., Roni, M., Panneerselvam, C., Suresh, U., Rajaganesh, R., Aruliah, R., Mahyoub, J.A., Trivedi, S., Rehman, H., Al-Aoh, H.A.N., Kumar, S.: Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol. Mol. Plant Pathol. 101, 202–213 (2018)

    CAS  Google Scholar 

  40. Nagarajan, S., Kuppusamy, K.A.: Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar India. J. Nanobiotechnol. 11(1), 39 (2013)

    Google Scholar 

  41. Nataraja, M.V., Jadon, K.S., Dutta, R., Savalia, S.D.: White grubs and their management in groundnut. Web report, Indian Council of Agricultural Research

  42. Oancea, A., Grasset, O., Le Menn, E., Bollengier, O., Bezacier, L., Le Mouélic, S., Tobie, G.: Laboratory infrared reflection spectrum of carbon dioxide clathrate hydrates for astrophysical remote sensing applications. Icarus 221(2), 900–910 (2012)

    CAS  Google Scholar 

  43. Oliveira, L.J., Hoffmann-Campo, C.B., Garcia, M.A.: Effect of soil management on the white grub population and damage in soybean. Pesquisa Agropecuária Brasileira 35(5), 887–894 (2000)

    Google Scholar 

  44. Pathania, M., Chandel, R.S., Verma, K.S., Mehta, P.K.: Seasonal life cycle of Holotrichia longipennis (Blanchard) (Coleoptera: Scarabaeidae: Melolonthinae): a serious foliage and root feeding pest in India. Phytoparasitica 44(5), 615–629 (2016)

    Google Scholar 

  45. Patil, S., Raut, S.J.: Synthesis and characterization of ZnO nanoparticles and 50% ZnO-bentonite nanocomposite. Int. J. Chem. Sci. 10(2), 1124–1132 (2012)

    CAS  Google Scholar 

  46. Rajan, A., Cherian, E., Baskar, G.: Biosynthesis of zinc oxide nanoparticles using Aspergillus fumigatus JCF and its antibacterial activity. Int. J. Mod. Sci. Technol. 1(2), 52–57 (2016)

    Google Scholar 

  47. Resham, S., Khalid, M., Kazi, A.G.: Nanobiotechnology in agricultural development. In: Barh, D., Khan, M., Davies, E. (eds.) PlantOmics: The Omics of Plant Science, pp. 683–698. Springer, New Delhi (2015)

    Google Scholar 

  48. Revina, A.A., Oksentyuk, E.V., Fenin, A.A.: Synthesis and properties of zinc nanoparticles: the role and prospects of radiation chemistry in the development of modern nanotechnology. Prot. Metal 4(3), 613–618 (2007)

    Google Scholar 

  49. Samson, P.R., Milner, R.J., Sander, E.D., Bullard, G.K.: Effect of fungicides and insecticides applied during planting of sugarcane on viability of Metarhizium anisopliae and its efficacy against white grubs. Biocontrol 50(1), 151–163 (2005)

    CAS  Google Scholar 

  50. Santhoshkumar, J., Kumar, S.V., Rajeshkumar, S.: Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour. Effic. Technol. 3(4), 459–465 (2017)

    Google Scholar 

  51. Shaheen, T.I., El-Naggar, M.E., Abdelgawad, A.M., Hebeish, A.: Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. Int. J. Biol. Macromol. 83, 426–432 (2016)

    CAS  Google Scholar 

  52. Shanmugasundaram, T., Balagurunathan, R.: Mosquito larvicidal activity of silver nanoparticles synthesised using actinobacterium, Streptomyces sp. M25 against Anopheles subpictus, Culex quinquefasciatus and Aedes aegypti. J. Parasit. Dis. 39(4), 677–684 (2015)

    CAS  Google Scholar 

  53. Shi, L., Shan, J., Ju, Y., Aikens, P., Prudhomme, R.K.: Nanoparticles as delivery vehicles for sunscreen agents. Colloids Surf. A 396, 122–129 (2012)

    CAS  Google Scholar 

  54. Shukla, G., Dixit, R., Kumar, A., Singh, R., Rani, A., Kumar, P.: Nanotechnology: an innovative approach for waste water treatment. Appl. Nanotechnol. Introd. (2017). https://doi.org/10.1007/978-3-030-02381-2_5

    Article  Google Scholar 

  55. Singh, A.K., Talat, M., Singh, D.P., Srivastava, O.N.: Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J. Nanopart. Res. 12(5), 1667–1675 (2010)

    CAS  Google Scholar 

  56. Sreedevi, K., Tyagi, S.: Species diversity of white grubs associated with sugarcane ecosystem of western Uttar Pradesh. A case study. Curr. Biotica 8(4), 404–410 (2015)

    Google Scholar 

  57. Srivastava, A.S., Srivastava, K.M., Nigam, P.M.: On the life history of white grub, holotrichia consanguinea Blanch (Coleopt, Melolonthidae). Zeitschrift für Angewandte Entomologie 68(1–4), 154–157 (1971)

    Google Scholar 

  58. Stadler, T., Buteler, M., Weaver, D.K.: Novel use of nanostructured alumina as an insecticide. Pest Manag. Sci. 66(6), 577–579 (2010)

    CAS  Google Scholar 

  59. Sutthanont, N., Attrapadung, S., Nuchprayoon, S.: Larvicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against Culex quinquefasciatus. Insects 10(1), 27 (2019)

    Google Scholar 

  60. Talebian, N., Nilforoushan, M.R.: Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue. Thin Solid Films 518(8), 2210–2215 (2010)

    CAS  Google Scholar 

  61. Theurkar, S.V., Ghadage, M.K., Patil, S.B.: New laboratory culture method for white grub national pest, India. Int. Res. J. Biol. Sci. 2(5), 83–85 (2013)

    Google Scholar 

  62. Tiwari, V., Mishra, N., Gadani, K., Solanki, P.S., Shah, N.A., Tiwari, M.: Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol. 9, 1218 (2018)

    Google Scholar 

  63. Tso, C.P., Zhung, C.M., Shih, Y.H., Tseng, Y.M., Wu, S.C., Doong, R.A.: Stability of metal oxide nanoparticles in aqueous solutions. Water Sci. Technol. 61(1), 127–133 (2010)

    CAS  Google Scholar 

  64. Umar, H., Kavaz, D., Rizaner, N.: Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomed. 14, 87 (2019)

    CAS  Google Scholar 

  65. Xie, Y., He, Y., Irwin, P.L., Jin, T., Shi, X.: Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011)

    CAS  Google Scholar 

  66. Yang, F.L., Li, X.G., Zhu, F., Lei, C.L.: Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem. 57, 10156–10162 (2009)

    CAS  Google Scholar 

  67. Yusof, H.M., Mohamad, R., Zaidan, U.H.: Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J. Anim. Sci. Biotechnol. 10(1), 57 (2019)

    Google Scholar 

  68. Zanetti-Ramos, B.G., Fritzen-Garcia, M.B., de Oliveira, C.S., Pasa, A.A., Soldi, V., Borsali, R., Creczynski-Pasa, T.B.: Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles. Mater. Sci. Eng. C 29(2), 638–640 (2009)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GS: Designed and performed experiments, analysed data and co-wrote the paper. SSG: Supervised the work and conceived the original idea. AS: Helped in the field work as a part of this study and co-wrote the paper.

Corresponding author

Correspondence to Gyanika Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, G., Gaurav, S.S. & Singh, A. Synthesis of mycogenic zinc oxide nanoparticles and preliminary determination of its efficacy as a larvicide against white grubs (Holotrichia sp.). Int Nano Lett 10, 131–139 (2020). https://doi.org/10.1007/s40089-020-00302-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-020-00302-0

Keywords

Navigation