Skip to main content

Advertisement

Log in

TNFα in Liver Fibrosis

  • Cytokines That Affect Liver Fibrosis and Activation of Hepatic Myofibroblasts (Tatiana Kisseleva, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Hepatocyte death, inflammation, and liver fibrosis are the hallmarks of chronic liver disease. Tumor necrosis factor-α (TNFα) is an inflammatory cytokine involved in liver inflammation and sustained liver inflammation leads to liver fibrosis. TNFα exerts inflammation, proliferation, and apoptosis. However, the role of TNFα signaling in liver fibrosis is not fully understood. This review highlights the recent findings demonstrating the molecular mechanisms of TNFα and its downstream signaling in liver fibrosis. During the progression of liver fibrosis, hepatic stellate cells play a pivotal role in a dynamic process of production of extracellular matrix proteins and modulation of immune response. Hepatic stellate cells transdifferentiate into activated myofibroblasts in response to damaged hepatocyte-derived mediators and immune cell-derived cytokines/chemokines. Here we will discuss the role of TNFα in hepatic stellate cell survival and activation, and the crosstalk between hepatic stellate cells and hepatocytes or other immune cells, such as macrophages, dendritic cells, and B cells in the development of liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Tsochatzis EA, Bosch J, Burroughs AK (2014) Liver cirrhosis. Lancet 383:1749–1761

    Article  PubMed  Google Scholar 

  2. • Bataller R and Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218. This review summarized the pathological process of liver fibrosis and mechanism of fibrosis resolution, and suggested therapeutic approaches to the treatment of liver fibrosis

  3. Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275:2247–2250

    Article  CAS  PubMed  Google Scholar 

  4. • Mederacke I, Hsu CC, Troeger JS et al (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823. This study employed fate-tracing technology to demonstrate that hepatic stellate cells are the major source of collagen-producing myofibroblasts

  5. Takehara T, Tatsumi T, Suzuki T et al (2004) Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology 127:1189–1197

    Article  CAS  PubMed  Google Scholar 

  6. Vick B, Weber A, Urbanik T et al (2009) Knockout of myeloid cell leukemia-1 induces liver damage and increases apoptosis susceptibility of murine hepatocytes. Hepatology 49:627–636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pellicoro A, Ramachandran P, Iredale JP et al (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 14:181–194

    Article  CAS  PubMed  Google Scholar 

  8. Sudo K, Yamada Y, Moriwaki H et al (2005) Lack of tumor necrosis factor receptor type 1 inhibits liver fibrosis induced by carbon tetrachloride in mice. Cytokine 29:236–244

    Article  CAS  PubMed  Google Scholar 

  9. Hernandez-Munoz I, de la Torre P, Sanchez-Alcazar JA et al (1997) Tumor necrosis factor alpha inhibits collagen alpha 1(I) gene expression in rat hepatic stellate cells through a G protein. Gastroenterology 113:625–640

    Article  CAS  PubMed  Google Scholar 

  10. Idriss HT, Naismith JH (2000) TNFα and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 50:184–195

    Article  CAS  PubMed  Google Scholar 

  11. Grell M, Douni E, Wajant H et al (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83:793–802

    Article  CAS  PubMed  Google Scholar 

  12. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    Article  CAS  PubMed  Google Scholar 

  13. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  CAS  PubMed  Google Scholar 

  14. Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377

    Article  CAS  PubMed  Google Scholar 

  15. Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nat Rev Cancer 10:561–574

    Article  CAS  PubMed  Google Scholar 

  16. Ea CK, Deng L, Xia ZP et al (2006) Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22:245–257

    Article  CAS  PubMed  Google Scholar 

  17. Luedde T, Schwabe RF (2011) NF-κB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8:108–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hayden MS, Ghosh S (2004) Signaling to NF-κB. Genes Dev 18:2195–2224

    Article  CAS  PubMed  Google Scholar 

  19. Adhikari A, Xu M, Chen ZJ (2007) Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26:3214–3226

    Article  CAS  PubMed  Google Scholar 

  20. Seki E, Brenner DA, Karin M (2012) A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology 143:307–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Liu ZG, Hsu H, Goeddel DV et al (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87:565–576

    Article  CAS  PubMed  Google Scholar 

  22. Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736

    Article  CAS  PubMed  Google Scholar 

  23. Park YH, Jeong MS, Park HH et al (2013) Formation of the death domain complex between FADD and RIP1 proteins in vitro. Biochim Biophys Acta 1834:292–300

    Article  CAS  PubMed  Google Scholar 

  24. Cho YS, Challa S, Moquin D et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. He S, Wang L, Miao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137:1100–1111

    Article  CAS  PubMed  Google Scholar 

  26. Zhang DW, Shao J, Lin J et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    Article  CAS  PubMed  Google Scholar 

  27. Jiang JX, Chen X, Fukada H et al (2013) Advanced glycation endproducts induce fibrogenic activity in nonalcoholic steatohepatitis by modulating TNF-α-converting enzyme activity in mice. Hepatology 58:1339–1348

    Article  CAS  PubMed  Google Scholar 

  28. • Pradere JP, Kluwe J, De Minicis S et al (2013) Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 58:1461–1473. This paper reported that macrophage promoted survival of activated HSCs, but not HSC activation. TNFa mediated macrophage-induced NF-kB activation in HSCs

  29. Duffield JS, Forbes SJ, Constandinou CM et al (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115:56–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rivera CA, Bradford BU, Hunt KJ et al (2001) Attenuation of CCl(4)-induced hepatic fibrosis by GdCl(3) treatment or dietary glycine. Am J Physiol Gastrointest Liver Physiol 281:G200–G207

    CAS  PubMed  Google Scholar 

  31. Seki E, De Minicis S, Osterreicher CH et al (2007) TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med 13:1324–1332

    Article  CAS  PubMed  Google Scholar 

  32. • Tarrats N, Moles A, Morales A et al (2011) Critical role of tumor necrosis factor receptor 1, but not 2, in hepatic stellate cell proliferation, extracellular matrix remodeling, and liver fibrogenesis. Hepatology 54:319–327. This paper elucidated the contribution of TNFa signaling through TNFR1 to HSC proliferation, MMP9 expression, and liver fibrosis

  33. Simeonova PP, Gallucci RM, Hulderman T et al (2001) The role of tumor necrosis factor-α in liver toxicity, inflammation, and fibrosis induced by carbon tetrachloride. Toxicol Appl Pharmacol 177:112–120

    Article  CAS  PubMed  Google Scholar 

  34. Kitamura K, Nakamoto Y, Akiyama M et al (2002) Pathogenic roles of tumor necrosis factor receptor p55-mediated signals in dimethylnitrosamine-induced murine liver fibrosis. Lab Invest 82:571–583

    Article  CAS  PubMed  Google Scholar 

  35. Tomita K, Tamiya G, Ando S et al (2006) Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 55:415–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Affo S, Dominguez M, Lozano JJ et al (2013) Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis. Gut 62:452–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Roh YS, Song J, Seki E (2014) TAK1 regulates hepatic cell survival and carcinogenesis. J Gastroenterol 49:185–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. • Inokuchi S, Aoyama T, Miura K et al (2010) Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci USA 107:844–849. This work described that TAK1-deficient hepatocyte showed increased susceptibility to TNFa-dependent cell death, which stimulated HSC through Kupffer cell-derived TGFβ and damage-associated molecular patterns

  39. Yang L, Inokuchi S, Roh YS et al (2013) Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology 144(1042–1054):e1044

    Google Scholar 

  40. Massoumi R, Chmielarska K, Hennecke K et al (2006) Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-κB signaling. Cell 125:665–677

    Article  CAS  PubMed  Google Scholar 

  41. Brummelkamp TR, Nijman SM, Dirac AM et al (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424:797–801

    Article  CAS  PubMed  Google Scholar 

  42. Kovalenko A, Chable-Bessia C, Cantarella G et al (2003) The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424:801–805

    Article  CAS  PubMed  Google Scholar 

  43. Trompouki E, Hatzivassiliou E, Tsichritzis T et al (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424:793–796

    Article  CAS  PubMed  Google Scholar 

  44. Reiley W, Zhang M, Sun SC (2004) Negative regulation of JNK signaling by the tumor suppressor CYLD. J Biol Chem 279:55161–55167

    Article  CAS  PubMed  Google Scholar 

  45. Ahmed N, Zeng M, Sinha I et al (2011) The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat Immunol 12:1176–1183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Trompouki E, Tsagaratou A, Kosmidis SK et al (2009) Truncation of the catalytic domain of the cylindromatosis tumor suppressor impairs lung maturation. Neoplasia 11:469–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Nikolaou K, Tsagaratou A, Eftychi C et al (2012) Inactivation of the deubiquitinase CYLD in hepatocytes causes apoptosis, inflammation, fibrosis, and cancer. Cancer Cell 21:738–750

    Article  CAS  PubMed  Google Scholar 

  48. Urbanik T, Boger RJ, Longerich T et al (2012) Liver specific deletion of CYLDexon7/8 induces severe biliary damage, fibrosis and increases hepatocarcinogenesis in mice. J Hepatol 57:995–1003

    Article  CAS  PubMed  Google Scholar 

  49. Pannem RR, Dorn C, Hellerbrand C et al (2014) Cylindromatosis gene CYLD regulates hepatocyte growth factor expression in hepatic stellate cells through interaction with histone deacetylase 7. Hepatology 60:1066–1081

    Article  CAS  PubMed  Google Scholar 

  50. He F, Guo FC, Li Z et al (2015) Myeloid-specific disruption of recombination signal binding protein Jκ ameliorates hepatic fibrosis by attenuating inflammation through cylindromatosis in mice. Hepatology 61:303–314

    Article  CAS  PubMed  Google Scholar 

  51. • Schwabe RF and Brenner DA (2006) Mechanisms of Liver Injury. I. TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 290:G583–589. This review discussed the pathological role of TNFa in liver injury. TNFa induces hepatocyte apoptosis and proliferation by regulation of IKK, ROS, and JNK pathways

  52. Kodama Y, Taura K, Miura K et al (2009) Antiapoptotic effect of c-Jun N-terminal Kinase-1 through Mcl-1 stabilization in TNF-induced hepatocyte apoptosis. Gastroenterology 136:1423–1434

    Article  CAS  PubMed  Google Scholar 

  53. Zhao G, Hatting M, Nevzorova YA et al (2014) Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis. Gut 63:1159–1172

    Article  CAS  PubMed  Google Scholar 

  54. Hong IH, Park SJ, Goo MJ et al (2013) JNK1 and JNK2 regulate α-SMA in hepatic stellate cells during CCl4-induced fibrosis in the rat liver. Pathol Int 63:483–491

    Article  CAS  PubMed  Google Scholar 

  55. Cubero FJ, Zhao G, Nevzorova YA et al (2015) Haematopoietic cell-derived Jnk1 is crucial for chronic inflammation and carcinogenesis in an experimental model of liver injury. J Hepatol 62:140–149

    Article  CAS  PubMed  Google Scholar 

  56. Kodama Y, Kisseleva T, Iwaisako K et al (2009) c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology 137(1467–1477):e1465

    Google Scholar 

  57. Son G, Iimuro Y, Seki E et al (2007) Selective inactivation of NF-κB in the liver using NF-κB decoy suppresses CCl4-induced liver injury and fibrosis. Am J Physiol Gastrointest Liver Physiol 293:G631–G639

    Article  CAS  PubMed  Google Scholar 

  58. Maeda S, Chang L, Li ZW et al (2003) IKKβ is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFα. Immunity 19:725–737

    Article  CAS  PubMed  Google Scholar 

  59. Geisler F, Algul H, Paxian S et al (2007) Genetic inactivation of RelA/p65 sensitizes adult mouse hepatocytes to TNF-induced apoptosis in vivo and in vitro. Gastroenterology 132:2489–2503

    Article  CAS  PubMed  Google Scholar 

  60. Luedde T, Beraza N, Kotsikoris V et al (2007) Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11:119–132

    Article  CAS  PubMed  Google Scholar 

  61. • Cubero FJ, Singh A, Borkham-Kamphorst E et al (2013) TNFR1 determines progression of chronic liver injury in the IKKγ/Nemo genetic model. Cell Death Differ 20:1580–1592. This report presents evidence for the involvemnt of TNFa in the progression of IKKγ/Nemo-dependent chronic liver injury. It explained the different roles of TNFR1 in hepatocytes and immune cells. Deletion of TNFR1 in hepatocytes ameliorated apoptotic cell death and liver fibrogenesis, whereas deletion in bone-marrow-derived cells accelerated chronic hepatitis

  62. Liedtke C, Bangen JM, Freimuth J et al (2011) Loss of caspase-8 protects mice against inflammation-related hepatocarcinogenesis but induces non-apoptotic liver injury. Gastroenterology 141:2176–2187

    Article  CAS  PubMed  Google Scholar 

  63. Freimuth J, Bangen JM, Lambertz D et al (2013) Loss of caspase-8 in hepatocytes accelerates the onset of liver regeneration in mice through premature nuclear factor kappa B activation. Hepatology 58:1779–1789

    Article  CAS  PubMed  Google Scholar 

  64. Gautheron J, Vucur M, Reisinger F et al (2014) A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol Med 6:1062–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. • Saile B, Matthes N, Knittel T et al (1999) Transforming growth factor β and tumor necrosis factor α inhibit both apoptosis and proliferation of activated rat hepatic stellate cells. Hepatology 30:196–202. This report discovered that the anti-apoptotic and anti-proliferative effect of TNFa in activated HSC. On the other hand, TNFa had no impact on apoptosis or proliferation in quiescent HSC

  67. Knittel T, Mehde M, Kobold D et al (1999) Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-α and TGF-β1. J Hepatol 30:48–60

    Article  CAS  PubMed  Google Scholar 

  68. Osawa Y, Hoshi M, Yasuda I et al (2013) Tumor necrosis factor-α promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells. PLoS ONE 8:e65251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Luedde T, Kaplowitz N, Schwabe RF (2014) Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147(765–783):e764

    Google Scholar 

  70. Canbay A, Feldstein AE, Higuchi H et al (2003) Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38:1188–1198

    Article  CAS  PubMed  Google Scholar 

  71. Canbay A, Friedman S, Gores GJ (2004) Apoptosis: the nexus of liver injury and fibrosis. Hepatology 39:273–278

    Article  PubMed  Google Scholar 

  72. Luedde T, Assmus U, Wustefeld T et al (2005) Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. J Clin Invest 115:849–859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Park J, Kang W, Ryu SW et al (2012) Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB. Hepatology 56:831–840

    Article  CAS  PubMed  Google Scholar 

  74. Kudo H, Takahara T, Yata Y et al (2009) Lipopolysaccharide triggered TNF-α-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J Hepatol 51:168–175

    Article  CAS  PubMed  Google Scholar 

  75. Amara S, Lopez K, Banan B et al (2015) Synergistic effect of pro-inflammatory TNFα and IL-17 in periostin mediated collagen deposition: potential role in liver fibrosis. Mol Immunol 64:26–35

    Article  CAS  PubMed  Google Scholar 

  76. Moschen AR, Fritz T, Clouston AD et al (2011) Interleukin-32: a new proinflammatory cytokine involved in hepatitis C virus-related liver inflammation and fibrosis. Hepatology 53:1819–1829

    Article  CAS  PubMed  Google Scholar 

  77. Liu C, Tao Q, Sun M et al (2010) Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Lab Invest 90:1805–1816

    Article  CAS  PubMed  Google Scholar 

  78. Chu PS, Nakamoto N, Ebinuma H et al (2013) C–C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology 58:337–350

    Article  CAS  PubMed  Google Scholar 

  79. Connolly MK, Bedrosian AS, Mallen-St Clair J et al (2009) In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-α. J Clin Invest 119:3213–3225

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Thapa M, Chinnadurai R, Velazquez VM et al (2015) Liver fibrosis occurs through dysregulation of MyD88-dependent innate B-cell activity. Hepatology 61:2067–2079

    Article  CAS  PubMed  Google Scholar 

  81. Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119:651–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15:362–374

    Article  CAS  PubMed  Google Scholar 

  83. Naveau S, Chollet-Martin S, Dharancy S et al (2004) A double-blind randomized controlled trial of infliximab associated with prednisolone in acute alcoholic hepatitis. Hepatology 39:1390–1397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by R01 AA020172, R01 DK085252, and P42 ES010337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekihiro Seki.

Additional information

This article is part of the Topical collection on Cytokines That Affect Liver Fibrosis and Activation of Hepatic Myofibroblasts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y.M., Seki, E. TNFα in Liver Fibrosis. Curr Pathobiol Rep 3, 253–261 (2015). https://doi.org/10.1007/s40139-015-0093-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-015-0093-z

Keywords

Navigation