Skip to main content

Advertisement

Log in

Black, White, and Gray: Macrophages in Skin Repair and Disease

  • Wound Healing and Tissue Repair (CC Yates, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Macrophages alter their responses during the temporal stages of wound healing. During the inflammatory phase, they perform phagocytosis. During neovascularization, they fuse sprouting endothelial cells. In the proliferation phase, they deposit extracellular matrix, and during wound resolution, macrophages phagocytize excessive cellular components. This review addresses how changing macrophage phenotypes affects skin repair and disease.

Recent Findings

Macrophages can determine the outcome of repair and can shift the normal wound healing response into fibrosis or chronic wounds. Emerging single-cell technologies for the first time provide us with tools to uncover macrophage origin, heterogeneity, and function.

Summary

Macrophages may exist as one population where all cells alter their phenotype in response to signals from the microenvironment. Alternatively, macrophages may exist as distinct subsets that can control wound outcomes. A clarified understanding will strengthen our knowledge of skin biology and aid in the development of wound healing therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Okabe Y, Medzhitov R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell. 2014;157:832–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hashimoto D, Miller J, Merad M. Dendritic cell and macrophage heterogeneity in vivo. Immunity. 2011;35:323–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. • Olsson A, et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature. 2016;537:698–702. During cell fate specification mixed lineage cell states might occur. This manuscript uses single-cell RNA sequencing to delineate mixed lineage hematopoietic cell states.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Satoh T, et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature. 2017;541:96–101. This work identifies a monocyte subset that shares characteristics of granulocytes that are critical for fibrosis.

    Article  CAS  PubMed  Google Scholar 

  5. • Nahrendorf M, Swirski FK. Abandoning M1/M2 for a network model of macrophage function. Circ Res. 2016;119:414–7. This review describes how the M1/M2 nomenclature may not be the best method to classify macrophages in vivo since the nomenclature has largely been an outcome of in vitro cuture of macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176:287–92.

    Article  CAS  PubMed  Google Scholar 

  7. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73.

    Article  CAS  PubMed  Google Scholar 

  8. Liddiard K, Taylor PR. Understanding local macrophage phenotypes in disease: shape-shifting macrophages. Nat Med. 2015;21:119–20.

    Article  CAS  PubMed  Google Scholar 

  9. Murray PJ, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol. 2013;14:986–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schulz C, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336:86–90.

    Article  CAS  PubMed  Google Scholar 

  12. Ginhoux F, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosas M, et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science. 2014;344:645–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008;8:935–47.

    Article  CAS  PubMed  Google Scholar 

  15. • Perdiguero EG, Geissmann F. The development and maintenance of resident macrophages. Nat Immunol. 2016;17:2–8. This review proposes the concept of a layered myeloid system that comprises resident macrophages from the embryo and circulating macrophages from the bone marrow.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Merad M, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol. 2002;3:1135–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol. 2014;14:417–28.

    Article  CAS  PubMed  Google Scholar 

  18. Tang A, Amagai M, Granger LG, Stanley JR, Udey MC. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature. 1993;361:82–5.

    Article  CAS  PubMed  Google Scholar 

  19. Konradi S, et al. Langerhans cell maturation is accompanied by induction of N-cadherin and the transcriptional regulators of epithelial-mesenchymal transition ZEB1/2. Eur J Immunol. 2014;44:553–60.

    Article  CAS  PubMed  Google Scholar 

  20. Kissenpfennig A, et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity. 2005;22:643–54.

    Article  CAS  PubMed  Google Scholar 

  21. Tamoutounour S, et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity. 2013;39:925–38.

    Article  CAS  PubMed  Google Scholar 

  22. Henri S, et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med. 2010;207:189–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boutens L, Stienstra R. Adipose tissue macrophages: going off track during obesity. Diabetologia. 2016;59:879–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weisberg SP, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21.

    Article  CAS  PubMed  Google Scholar 

  26. He L, Marneros AG. Macrophages are essential for the early wound healing response and the formation of a fibrovascular scar. Am J Pathol. 2013;182:2407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Angermueller C, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods. 2016;13:229–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yanez DA, Lacher RK, Vidyarthi A, Colegio OR. The role of macrophages in skin homeostasis. Pflugers Arch. 2017;469:455–63.

    Article  CAS  PubMed  Google Scholar 

  29. Goren I, et al. A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am J Pathol. 2009;175:132–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mirza R, DiPietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol. 2009;175:2454–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lucas T, et al. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010;184:3964–77.

    Article  CAS  PubMed  Google Scholar 

  32. Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation. Wound Repair Regen. 2016;24:644–56.

    Article  PubMed  Google Scholar 

  33. Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A. 2013;110:9415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thangarajah H, et al. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A. 2009;106:13505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duscher D, et al. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proc Natl Acad Sci U S A. 2015;112:94–9.

    Article  CAS  PubMed  Google Scholar 

  36. Sen CK. Wound healing essentials: let there be oxygen. Wound Repair Regen. 2009;17:1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  37. DiPietro LA, Burdick M, Low QE, Kunkel SL, Strieter RM. MIP-1alpha as a critical macrophage chemoattractant in murine wound repair. J Clin Invest. 1998;101:1693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weidenbusch M, Anders HJ. Tissue microenvironments define and get reinforced by macrophage phenotypes in homeostasis or during inflammation, repair and fibrosis. J Innate Immun. 2012;4:463–77.

    Article  CAS  PubMed  Google Scholar 

  39. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.

    Article  CAS  PubMed  Google Scholar 

  40. DiPietro LA, Polverini PJ, Rahbe SM, Kovacs EJ. Modulation of JE/MCP-1 expression in dermal wound repair. Am J Pathol. 1995;146:868–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dipietro LA, Reintjes MG, Low QE, Levi B, Gamelli RL. Modulation of macrophage recruitment into wounds by monocyte chemoattractant protein-1. Wound Repair Regen. 2001;9:28–33.

    Article  CAS  PubMed  Google Scholar 

  42. Englander HR. Fluoridation protects occlusal areas. J Am Dent Assoc. 1979;98:11.

    Article  CAS  PubMed  Google Scholar 

  43. Slauch JM. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol. 2011;80:580–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010;10:712–23.

    Article  CAS  PubMed  Google Scholar 

  45. Martin P. Wound healing—aiming for perfect skin regeneration. Science. 1997;276:75–81.

    Article  CAS  PubMed  Google Scholar 

  46. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000;407:784–8.

    Article  CAS  PubMed  Google Scholar 

  47. Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol. 2011;12:1035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Das A, Ganesh K, Khanna S, Sen CK, Roy S. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol. 2014;192:1120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–31.

    Article  CAS  PubMed  Google Scholar 

  50. Leibovich SJ, et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature. 1987;329:630–2.

    Article  CAS  PubMed  Google Scholar 

  51. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;23:95–121.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Okuno Y, Nakamura-Ishizu A, Kishi K, Suda T, Kubota Y. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood. 2011;117:5264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wenes M, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 2016;24:701–15.

    Article  CAS  PubMed  Google Scholar 

  55. Fantin A, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116:829–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J. Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood. 2011;118:3436–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Maruyama K, et al. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol. 2007;170:1178–91.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Barnett FH, et al. Macrophages form functional vascular mimicry channels in vivo. Sci Rep. 2016;6:36659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Willenborg S, et al. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood. 2012;120:613–25.

    Article  CAS  PubMed  Google Scholar 

  60. Auffray C, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science. 2007;317:666–70.

    Article  CAS  PubMed  Google Scholar 

  61. Asahara T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  CAS  PubMed  Google Scholar 

  62. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107:1164–9.

    Article  PubMed  Google Scholar 

  63. Purhonen S, et al. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci U S A. 2008;105:6620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rohde E, et al. Blood monocytes mimic endothelial progenitor cells. Stem Cells. 2006;24:357–67.

    Article  PubMed  Google Scholar 

  65. Yamaguchi Y, et al. Enhanced angiogenic potency of monocytic endothelial progenitor cells in patients with systemic sclerosis. Arthritis Res Ther. 2010;12:R205.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yamaguchi Y, Kuwana M. Proangiogenic hematopoietic cells of monocytic origin: roles in vascular regeneration and pathogenic processes of systemic sclerosis. Histol Histopathol. 2013;28:175–83.

    CAS  PubMed  Google Scholar 

  67. Ploeger DT, et al. Cell plasticity in wound healing: paracrine factors of M1/ M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal. 2013;11:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE. Alternatively activated macrophages derived from THP-1 cells promote the fibrogenic activities of human dermal fibroblasts. Wound Repair Regen. 2017;25:377–88.

    Article  PubMed  Google Scholar 

  69. Shook B, Xiao E, Kumamoto Y, Iwasaki A, Horsley V. CD301b+ macrophages are essential for effective skin wound healing. J Invest Dermatol. 2016;136:1885–91.

    Article  CAS  PubMed  Google Scholar 

  70. Suga H, et al. Tracking the elusive fibrocyte: identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing. Stem Cells. 2014;32:1347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pilling D, Fan T, Huang D, Kaul B, Gomer RH. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One. 2009;4:e7475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wong VW, et al. Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation. FASEB J. 2011;25:4498–510.

    Article  CAS  PubMed  Google Scholar 

  73. Ishida Y, Gao JL, Murphy PM. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J Immunol. 2008;180:569–79.

    Article  CAS  PubMed  Google Scholar 

  74. Tokuda A, et al. Pivotal role of CCR1-positive leukocytes in bleomycin-induced lung fibrosis in mice. J Immunol. 2000;164:2745–51.

    Article  CAS  PubMed  Google Scholar 

  75. Wong VW, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med. 2011;18:148–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Yates CC, Bodnar R, Wells A. Matrix control of scarring. Cell Mol Life Sci. 2011;68:1871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lech M, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta. 2013;1832:989–97.

    Article  CAS  PubMed  Google Scholar 

  78. • Wernig G, et al. Unifying mechanism for different fibrotic diseases. Proc Natl Acad Sci U S A. 2017;114:4757–62. In this manuscript, Wernig et al show that blockade of the CD47 “don't eat me” signal on fibroblasts can activate phagocytosis by macrophages and reverses fibrosis in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Aarabi S, Longaker MT, Gurtner GC. Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med. 2007;4:e234.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.

    Article  CAS  PubMed  Google Scholar 

  81. Aarabi S, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 2007;21:3250–61.

    Article  CAS  PubMed  Google Scholar 

  82. Paterno J, et al. Akt-mediated mechanotransduction in murine fibroblasts during hypertrophic scar formation. Wound Repair Regen. 2011;19:49–58.

    Article  PubMed  Google Scholar 

  83. Gurtner GC, et al. Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies. Ann Surg. 2011;254:217–25.

    Article  PubMed  Google Scholar 

  84. Boyce DE, Ciampolini J, Ruge F, Murison MS, Harding KG. Inflammatory-cell subpopulations in keloid scars. Br J Plast Surg. 2001;54:511–6.

    Article  CAS  PubMed  Google Scholar 

  85. Butzelaar L, et al. Inhibited early immunologic response is associated with hypertrophic scarring. Exp Dermatol. 2016;25:797–804.

    Article  CAS  PubMed  Google Scholar 

  86. van den Broek LJ, van der Veer WM, de Jong EH, Gibbs S, Niessen FB. Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation. Exp Dermatol. 2015;24:623–9.

    Article  PubMed  CAS  Google Scholar 

  87. Kwon SH, Gurtner GC. Is early inflammation good or bad? Linking early immune changes to hypertrophic scarring. Exp Dermatol. 2017;26:133–4.

    Article  PubMed  Google Scholar 

  88. Manetti M. Deciphering the alternatively activated (M2) phenotype of macrophages in scleroderma. Exp Dermatol. 2015;24:576–8.

    Article  CAS  PubMed  Google Scholar 

  89. Christmann RB, Lafyatis R. The cytokine language of monocytes and macrophages in systemic sclerosis. Arthritis Res Ther. 2010;12:146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Johnson ME, Pioli PA, Whitfield ML. Gene expression profiling offers insights into the role of innate immune signaling in SSc. Semin Immunopathol. 2015;37:501–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Taroni JN, et al. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med. 2017;9:27.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sindrilaru A, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121:985–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shanmugam VK, Angra D, Rahimi H, McNish S. Vasculitic and autoimmune wounds. J Vasc Surg Venous Lymphat Disord. 2017;5:280–92.

    Article  PubMed  Google Scholar 

  94. Li J, Hsu HC, Mountz JD. Managing macrophages in rheumatoid arthritis by reform or removal. Curr Rheumatol Rep. 2012;14:445–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Herrmann M, et al. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum. 1998;41:1241–50.

    Article  CAS  PubMed  Google Scholar 

  96. Wetzler C, Kampfer H, Stallmeyer B, Pfeilschifter J, Frank S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol. 2000;115:245–53.

    Article  CAS  PubMed  Google Scholar 

  97. Khanna S, et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One. 2010;5:e9539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Yates CC, et al. Improved transplanted stem cell survival in a polymer gel supplemented with Tenascin C accelerates healing and reduces scarring of murine skin wounds. Cell Transplant. 2017;26:103–13.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rennert RC, et al. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther. 2014;5:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kosaraju R, et al. Adipose-derived stem cell-seeded hydrogels increase endogenous progenitor cell recruitment and neovascularization in wounds. Tissue Eng Part A. 2016;22:295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sindrilaru A, Scharffetter-Kochanek K. Disclosure of the culprits: macrophages-versatile regulators of wound healing. Adv Wound Care (New Rochelle). 2013;2:357–68.

    Article  Google Scholar 

  102. Navegantes KC, et al. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med. 2017;15:36.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.

    Article  CAS  PubMed  Google Scholar 

  104. Rinkevich Y, et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science. 2015;348:aaa2151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Rennert RC, et al. Multiple subsets of brain tumor initiating cells coexist in glioblastoma. Stem Cells. 2016;34:1702–7.

    Article  CAS  PubMed  Google Scholar 

  106. Rodrigues M, Wong VW, Gurtner GC. Finding a needle in a “needlestack”. Cell Cycle. 2016;15:3331–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rennert RC, et al. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies. Nat Commun. 2016;7:11945.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rodrigues M, Mittermiller P, Padmanabhan J, Gurtner GC. Progenitor and stem cell heterogeneity: using big data to divide and conquer. In: Anthony Atala RL, Nerem R, Mikos A, editors. Principles of regenerative medicine. Amsterdam: Elsevier; 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Rodrigues.

Ethics declarations

Conflict of Interest

The authors have no conflicts to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Wound Healing and Tissue Repair

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, M., Gurtner, G.C. Black, White, and Gray: Macrophages in Skin Repair and Disease. Curr Pathobiol Rep 5, 333–342 (2017). https://doi.org/10.1007/s40139-017-0152-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0152-8

Keywords

Navigation