Skip to main content
Log in

Mathematical Modeling and Simulations for Developing Nanoparticle-Based Cancer Drug Delivery Systems: A Review

  • Nanoparticle-based Drug Delivery (M Gogoi, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Nanoparticles are crucial for developing patient-/target-specific drug delivery systems. In recent days, mathematical modeling and simulation plays an important role in optimization of various parameters like nanoparticle-based drug dose, dissolution of drug particles, and adverse reaction from the nanoparticles. With the help of modeling and simulation, we can determine or optimize the type, shape, and size of the nanoparticles to be utilized as potential drug delivery system and its influence on the targeted cells/tissues. The main purpose of this review article is to discuss the latest modeling and simulation tools available for developing patient-specific nanoparticle-based drug delivery systems.

Recent Findings

In our current study, we are reporting different mathematical models used for cancer drug delivery systems. It also reports several numerical methods, and simulations models are available for representing nano-drug-bio interactions within the biological systems.

Summary

This review highlights the applications of mathematical modeling and simulation software for developing a rational nano-carrier design and selecting accurate biomaterials for in vivo model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sahai N, Ahmad N, Gogoi M. Nanoparticles based drug delivery for tissue regeneration using biodegradable scaffolds: a review. Curr Pathobiol Rep. 2018;6:219–24.

    Article  CAS  Google Scholar 

  3. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44:1029–38. https://doi.org/10.1021/ar200019c.

    Article  CAS  PubMed  Google Scholar 

  4. Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater. 2013;12:958–62.

    Article  CAS  Google Scholar 

  5. Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular Nanomedicine Towards Cancer : J Pharm Sci. 2012;101:2271–80. https://doi.org/10.1002/jps.

    Article  CAS  PubMed  Google Scholar 

  6. Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11:2313–81. https://doi.org/10.1021/acsnano.6b06040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. Nat Nanotechnol. 2019;14:1007–17. https://doi.org/10.1038/s41565-019-0567-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.

    Article  CAS  Google Scholar 

  9. Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today. 2013;8:290–312.

    Article  CAS  Google Scholar 

  10. Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019;20.

  11. Dellinger A, Zhou Z, Connor J, Madhankumar AB, Pamujula S, Sayes CM, et al. Application of fullerenes in nanomedicine: an update. Nanomedicine. 2013;8:1191–208.

    Article  CAS  Google Scholar 

  12. Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 2014;4:94. https://doi.org/10.1007/s40089-014-0094-7.

    Article  CAS  Google Scholar 

  13. Clemente-Casares X, Santamaria P. Nanomedicine in autoimmunity. Immunol Lett. 2014;158:167–74.

    Article  CAS  Google Scholar 

  14. Moss DM, Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol. 2014;171:3963–79.

    Article  CAS  Google Scholar 

  15. Moss DM, Siccardi M (2014) Optimising nanomedicine pharmacokinetics using PBPK modelling. Br J Pharmacol 44:n/a-n/a.

  16. Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19:566–75. https://doi.org/10.1038/s41563-019-0566-2.

    Article  CAS  PubMed  Google Scholar 

  17. • Dogra P, Butner JD, Chuang Y li, et al (2019) Mathematical modeling in cancer nanomedicine: a review Biomed Microdev 21: . doi: https://doi.org/10.1007/s10544-019-0380-2

  18. •• Shamsi M, Mohammadi A, Manshadi MKD, Sanati-Nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release. 2019;307:150–65.

    Article  CAS  Google Scholar 

  19. Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364:328–43.

    Article  CAS  Google Scholar 

  20. Clancy CE, An G, Cannon WR, Liu Y, May EE, Ortoleva P, et al. Multiscale modeling in the clinic: drug design and development. Ann Biomed Eng. 2016;44:2591–610. https://doi.org/10.1007/s10439-016-1563-0.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gilad Y, Noy E, Senderowitz H, Albeck A, Firer MA, Gellerman G. Synthesis, biological studies and molecular dynamics of new anticancer RGD-based peptide conjugates for targeted drug delivery. Bioorg Med Chem. 2016;24:294–303. https://doi.org/10.1016/j.bmc.2015.12.020.

    Article  CAS  PubMed  Google Scholar 

  22. Mansoorinasab A, Morsali A, Heravi MM, Beyramabadi SA (2015) Quantum mechanical study on the adsorption of drug gentamicin onto aγ-Fe2 O3 nanoparticles. Orient J Chem 31:1509–1513 . doi: https://doi.org/10.13005/ojc/310329

  23. Xu Z, Wu GM, Li Q, et al. Predictive value of combined LIPS and ANG-2 level in critically ill patients with ARDS risk factors. Mediators Inflamm 2018. 2018. https://doi.org/10.1155/2018/1739615.

  24. Forouzandehmehr M, Shamloo A. Margination and adhesion of micro- and nanoparticles in the coronary circulation: a step towards optimised drug carrier design. Biomech Model Mechanobiol. 2018;17:205–21. https://doi.org/10.1007/s10237-017-0955-x.

    Article  PubMed  Google Scholar 

  25. Bozsak F, Chomaz JM, Barakat AI. Modeling the transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall. Biomech Model Mechanobiol. 2014;13:327–47. https://doi.org/10.1007/s10237-013-0546-4.

    Article  PubMed  Google Scholar 

  26. Liu Y, Shah S, Tan J. Computational modeling of nanoparticle targeted drug delivery. Rev Nanosci Nanotechnol. 2012;1:66–83. https://doi.org/10.1166/rnn.2012.1014.

    Article  CAS  Google Scholar 

  27. Hossain SS, Hossainy SFA, Bazilevs Y, Calo VM, Hughes TJR. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Comput Mech. 2012;49:213–42. https://doi.org/10.1007/s00466-011-0633-2.

    Article  Google Scholar 

  28. Priyadharshini S, Ponalagusamy R. An unsteady flow of magnetic nanoparticles as drug carrier suspended in micropolar fluid through a porous tapered arterial stenosis under non-uniform magnetic field and periodic body acceleration. Comput Appl Math. 2018;37:4259–80. https://doi.org/10.1007/s40314-018-0572-z.

    Article  Google Scholar 

  29. Arifin DY, Lee LY, Wang CH. Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv Drug Deliv Rev. 2006;58:1274–325.

    Article  CAS  Google Scholar 

  30. Iordanskii AL, Feldstein MM, Markin VS, Hadgraft J, Plate NA. Modeling of the drug delivery from a hydrophilic transdermal therapeutic system across polymer membrane. Eur J Pharm Biopharm. 2000;49:287–93. https://doi.org/10.1016/S0939-6411(00)00063-1.

    Article  CAS  PubMed  Google Scholar 

  31. Swierniak A, Kimmel M, Smieja J. Mathematical modeling as a tool for planning anticancer therapy. Eur J Pharmacol. 2009;625:108–21.

    Article  CAS  Google Scholar 

  32. Wang Z, Deisboeck TS. Mathematical modeling in cancer drug discovery. Drug Discov Today. 2014;19:145–50.

    Article  Google Scholar 

  33. Sanga S, Sinek JP, Frieboes HB, Ferrari M, Fruehauf JP, Cristini V. Mathematical modeling of cancer progression and response to chemotherapy. Expert Rev Anticancer Ther. 2006;6:1361–76. https://doi.org/10.1586/14737140.6.10.1361.

    Article  CAS  PubMed  Google Scholar 

  34. Sun X, Hu B. Mathematical modeling and computational prediction of cancer drug resistance. Brief Bioinform. 2017;19:1382–99. https://doi.org/10.1093/bib/bbx065.

    Article  CAS  PubMed Central  Google Scholar 

  35. Kim MJ, Gillies RJ, Rejniak KA (2013) Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front. Oncol. 3 NOV.

  36. Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F. Cancer evolution: mathematical models and computational inference. Syst Biol. 2015;64:e1–e25. https://doi.org/10.1093/sysbio/syu081.

    Article  CAS  PubMed  Google Scholar 

  37. Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physiol. 2018;9.

  38. Serre R, Benzekry S, Padovani L, et al. Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy. In: Cancer Research; 2016. p. 4931–40.

    Google Scholar 

  39. Leder K, Pitter K, Laplant Q, et al. Mathematical modeling of pdgf-driven glioblastoma reveals optimized radiation dosing schedules. Cell. 2014;156:603–16. https://doi.org/10.1016/j.cell.2013.12.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dell’Orco D, Lundqvist M, Oslakovic C, et al. Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One. 2010;5:e10949. https://doi.org/10.1371/journal.pone.0010949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dell’Orco D, Lundqvist M, Cedervall T, Linse S. Delivery success rate of engineered nanoparticles in the presence of the protein corona: a systems-level screening. Nanomedicine. 2012;8:1271–81. https://doi.org/10.1016/j.nano.2012.02.006.

    Article  CAS  PubMed  Google Scholar 

  42. Darabi Sahneh F, Scoglio C, Riviere J. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations. PLoS One. 2013;8:e64690. https://doi.org/10.1371/journal.pone.0064690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lopez H, Lobaskin V. Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles. J Chem Phys. 2015:143. https://doi.org/10.1063/1.4936908.

  44. Tavanti F, Pedone A, Menziani MC. A closer look into the ubiquitin corona on gold nanoparticles by computational studies. New J Chem. 2015;39:2474–82. https://doi.org/10.1039/c4nj01752h.

    Article  CAS  Google Scholar 

  45. Gentile F, Ferrari M, Decuzzi P. The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology. Ann Biomed Eng. 2008;36:254–61. https://doi.org/10.1007/s10439-007-9423-6.

    Article  PubMed  Google Scholar 

  46. Tsoi KM, Macparland SA, Ma XZ, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15:1212–21. https://doi.org/10.1038/nmat4718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee TR, Choi M, Kopacz AM, Yun SH, Liu WK, Decuzzi P. On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better. Sci Rep. 2013;3. https://doi.org/10.1038/srep02079.

  48. Müller K, Fedosov DA, Gompper G. Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep. 2014;4. https://doi.org/10.1038/srep04871.

  49. Fullstone G, Wood J, Holcombe M, Battaglia G. Modelling the transport of nanoparticles under blood flow using an agent-based approach. Sci Rep. 2015:5. https://doi.org/10.1038/srep10649.

  50. Gaohua L, Abduljalil K, Jamei M, Johnson TN, Rostami-Hodjegan A. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br J Clin Pharmacol. 2012;74:873–85. https://doi.org/10.1111/j.1365-2125.2012.04363.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Decuzzi P, Ferrari M. The receptor-mediated endocytosis of nonspherical particles. Biophys J. 2008;94:3790–7. https://doi.org/10.1529/biophysj.107.120238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yuan H, Zhang S. Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles. Appl Phys Lett. 2010:96. https://doi.org/10.1063/1.3293303.

  53. Dogra P, Adolphi NL, Wang Z, Lin YS, Butler KS, Durfee PN, et al. Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nat Commun. 2018:9. https://doi.org/10.1038/s41467-018-06730-z.

  54. Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7:383–8. https://doi.org/10.1038/nnano.2012.45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hendriks BS, Reynolds JG, Klinz SG, Geretti E, Lee H, Leonard SC, et al. Multiscale kinetic modeling of liposomal doxorubicin delivery quantifies the role of tumor and drug-specific parameters in local delivery to tumors. CPT Pharmacometrics Syst Pharmacol. 2012;1. https://doi.org/10.1038/psp.2012.16.

  56. Frieboes HB, Wu M, Lowengrub J, Decuzzi P, Cristini V. A computational model for predicting nanoparticle accumulation in tumor vasculature. PLoS One. 2013;8:e56876. https://doi.org/10.1371/journal.pone.0056876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stapleton S, Milosevic M, Allen C, Zheng J, Dunne M, Yeung I, et al. A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors. PLoS One. 2013;8. https://doi.org/10.1371/journal.pone.0081157.

  58. Sykes EA, Dai Q, Sarsons CD, Chen J, Rocheleau JV, Hwang DM, et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc Natl Acad Sci U S A. 2016;113:E1142–51. https://doi.org/10.1073/pnas.1521265113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pascal J, Ashley CE, Wang Z, Brocato TA, Butner JD, Carnes EC, et al. Mechanistic modeling identifies drug-uptake history as predictor of tumor drug resistance and nano-carrier-mediated response. ACS Nano. 2013;7:11174–82. https://doi.org/10.1021/nn4048974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Leonard F, Curtis LT, Yesantharao P, Tanei T, Alexander JF, Wu M, et al. Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions. Nanoscale. 2016;8:12544–52. https://doi.org/10.1039/c5nr07796f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Z, Kerketta R, Chuang YL, Dogra P, Butner JD, Brocato TA, et al. Theory and experimental validation of a spatio-temporal model of chemotherapy transport to enhance tumor cell kill. PLoS Comput Biol. 2016;12. https://doi.org/10.1371/journal.pcbi.1004969.

  62. Miller HA, Frieboes HB. Evaluation of drug-loaded gold nanoparticle cytotoxicity as a function of tumor vasculature-induced tissue heterogeneity. Ann Biomed Eng. 2019;47:257–71. https://doi.org/10.1007/s10439-018-02146-4.

    Article  PubMed  Google Scholar 

  63. Laomettachit T, Puri IK, Liangruksa M. A two-step model of TiO2 nanoparticle toxicity in human liver tissue. Toxicol Appl Pharmacol. 2017;334:47–54. https://doi.org/10.1016/j.taap.2017.08.018.

    Article  CAS  PubMed  Google Scholar 

  64. Saeedi M, Vahidi O, Goodarzi V, Saeb MR, Izadi L, Mozafari M. A new prospect in magnetic nanoparticle-based cancer therapy: taking credit from mathematical tissue-mimicking phantom brain models. Nanomedicine. 2017;13:2405–14. https://doi.org/10.1016/j.nano.2017.07.013.

    Article  CAS  PubMed  Google Scholar 

  65. Chaudhuri A, Battaglia G, Golestanian R. The effect of interactions on the cellular uptake of nanoparticles. Phys Biol. 2011;8. https://doi.org/10.1088/1478-3975/8/4/046002.

  66. Ghaghada KB, Saul J, Natarajan JV, Bellamkonda RV, Annapragada AV. Folate targeting of drug carriers: a mathematical model. J Control Release. 2005;104:113–28. https://doi.org/10.1016/j.jconrel.2005.01.012.

    Article  CAS  PubMed  Google Scholar 

  67. Salvati A, Åberg C, dos Santos T, Varela J, Pinto P, Lynch I, et al. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomedicine. 2011;7:818–26. https://doi.org/10.1016/j.nano.2011.03.005.

    Article  CAS  PubMed  Google Scholar 

  68. Mukherjee SP, Byrne HJ. Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation. Nanomedicine. 2013;9:202–11. https://doi.org/10.1016/j.nano.2012.05.002.

    Article  CAS  PubMed  Google Scholar 

  69. Sorrell I, Shipley RJ, Hearnden V, Colley HE, Thornhill MH, Murdoch C, et al. Combined mathematical modelling and experimentation to predict polymersome uptake by oral cancer cells. Nanomedicine. 2014;10:339–48. https://doi.org/10.1016/j.nano.2013.08.013.

    Article  CAS  PubMed  Google Scholar 

  70. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52:1653–62. https://doi.org/10.1016/j.eururo.2006.11.023.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Sahai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nanoparticle-based Drug Delivery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahai, N., Gogoi, M. & Ahmad, N. Mathematical Modeling and Simulations for Developing Nanoparticle-Based Cancer Drug Delivery Systems: A Review. Curr Pathobiol Rep 9, 1–8 (2021). https://doi.org/10.1007/s40139-020-00219-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-020-00219-5

Keywords

Navigation