Skip to main content
Log in

Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

High manganese twinning-induced plasticity (TWIP) steel is a new kind of structural material and possesses both high strength and superior plasticity and can meet the weight-lightening requirement for manufacturing vehicle body. The excellent formability of the TWIP steel comes from the extraordinary strain hardening effect during plastic deformation. The reduction of specific weight by aluminum alloying and strain hardening effect can lead to an effective weight reduction of the steel components, and provide a better choice for materials in vehicle body design. The TWIP effect in high Mn steels is generally associated with the successive workhardening generated by twins and influenced by some factors, such as Mn content, Al addition revealed by stacking fault energy (SFE), grain size, deformation temperature and strain rate. The present review introduces some aspects of the TWIP steels relating to their physical metallurgy, influencing factors associated with their deformation mechanisms, and a prospect for the future investigation is also described. Moreover, as a potential candidate for replacing Ni-Cr austenitic stainless steel, researches on the oxidation behavior and corrosion resistance of Fe-Mn-Al-C system steels are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Hadfield, Science 12 (1888) 284.

    Google Scholar 

  2. V.H. Schumann, Neue Hütte 17 (1972) 605.

    CAS  Google Scholar 

  3. L. Remy and A. Pineau, Mater. Sci. Eng. 28 (1977) 99.

    Article  CAS  Google Scholar 

  4. T.W. Kim and Y.G. Kim, Mater. Sci. Eng. A 160 (1993) 13.

    Article  Google Scholar 

  5. O. Grässel, G. Frommeyer, C. Derder and H. Hofman, J. Phys. IV 60 (1997) 383.

    Google Scholar 

  6. O. Grässel, L. Krüger, G. Frommeyer and L. Meyer, Int. J. Plast. 16 (2000) 1391.

    Article  Google Scholar 

  7. G. Frommeyer, U. Brüx and P. Neumann, ISIJ Int. 43 (2003) 438.

    Article  CAS  Google Scholar 

  8. J.D. Yoo, S.W. Hwang and K.T. Park, Mater. Sci. Eng. A 508 (2009) 234.

    Article  Google Scholar 

  9. G. Kim, S.K. Kim, S.C. Kang and I.R. Sohn, CAMPISIJ 21 (2008) 593.

    Google Scholar 

  10. J.L. Ham and R.E. Cairns, Prod. Eng. 29(12) (1958) 50.

    Google Scholar 

  11. Y.S. Chang and C.H. Shih, Acta Metall. Sin. 7 (1964) 285. (in Chinese)

    Google Scholar 

  12. Y.S. Chang, C.H. Shih and Y.K. Li, Acta Metall. Sin. 8 (1965) 346. (in Chinese)

    Google Scholar 

  13. J.W. Lee, C.C. Wu and T.F. Liu, Scr. Mater. 50 (2004) 1389.

    Article  CAS  Google Scholar 

  14. G.D. Tsay, C.L. Lin, C.G. Chao and T.F. Liu, Mater. Trans. 51 (2010) 2318.

    Article  CAS  Google Scholar 

  15. T.F. Liu and C.M. Wan, Scr. Metall. 19 (1985) 805.

    Article  CAS  Google Scholar 

  16. T.F. Liu and C.M. Wan, Scr. Metall. 19 (1985) 727.

    Article  CAS  Google Scholar 

  17. T.F. Liu and C.C. Wu, Scr. Metall. 23 (1989) 1087.

    Article  CAS  Google Scholar 

  18. B.C. de Cooman, K.G. Chin and J.K. Kim, In: M. Chiaberge (Ed.), New Trends and Developments in Automotive System Engineering, InTech, 2011, pp.101–128.

  19. W.S. Yang and C.M. Wan, J. Mater. Sci. 25 (1990) 1821.

    Article  CAS  Google Scholar 

  20. B.C. De Cooman, O. Kwon and K.G. Chin, Mater. Sci. Technol. 28 (2012) 513.

    Article  Google Scholar 

  21. J.K. Jung, O.Y. Lee, Y.K. Park, D.E. Kim, K.G. Jin, S.K. Kim and K.H. Song, J. Kor. Inst. Met. Mater. 46 (2008) 627.

    CAS  Google Scholar 

  22. X.M. Qin, Plastic Deformation Mechanism and Microstructure, Mechaical Properties of Fe-Mn-Al-C TWIP Steels, Ph.D. Thesis, Northeastern University, 2011. (in Chinese)

  23. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura and K. Kunishige, Scr. Mater. 59 (2008) 963.

    Article  CAS  Google Scholar 

  24. N. Tsuji, Y. Saito, S.H. Lee and Y. Minamino, Adv. Eng. Mater. 5 (2003) 338.

    Article  CAS  Google Scholar 

  25. N. Tsuji, Y. Ito, Y. Saito and Y. Minamino, Scr. Mater. 47 (2002) 893.

    Article  CAS  Google Scholar 

  26. S.H. Wang, Z.Y. Liu and G.D. Wang, Acta Metall. Sin. 45 (2009) 1083. (in Chinese)

    Google Scholar 

  27. E. El-Danaf, S.R. Kalidindi and R.D. Doherty, Metall. Mater. Trans. A 30 (1999) 1223.

    Article  Google Scholar 

  28. S. Asgari, J. Mater. Process. Technol. 155–156 (2004) 1905.

    Article  Google Scholar 

  29. A.A.S. Mohammed, E.A. El-Danaf and A.K.A. Radwan, Mater. Sci. Eng. A 457 (2007) 373.

    Article  Google Scholar 

  30. S. Mahajan and G.Y. Chin, Acta Metall. 21 (1973) 1353.

    Article  CAS  Google Scholar 

  31. G. Dini, A. Najafizadeh, R. Ueji and S.M. Monir-Vaghefi, Mater. Des. 31 (2010) 3395.

    Article  CAS  Google Scholar 

  32. G. Dini, A. Najafizadeh, S.M. Monir-Vaghefi and R. Ueji, J. Mater. Sci Technol. 26 (2012) 181.

    Google Scholar 

  33. J.D. Yoo and K.D. Park, Mater. Sci. Eng. A 496 (2008) 417.

    Article  Google Scholar 

  34. D.K. Wilsdorf, Mater. Sci. Eng. A 113 (1989)1.

    Article  Google Scholar 

  35. D.A. Hughes, Acta Metall. Mater. 41 (1993) 1421.

    Article  CAS  Google Scholar 

  36. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot and N. Guelton, Mater. Sci. Eng. A 387–389 (2004) 158.

    Google Scholar 

  37. S.H. Wang, Z.Y. Liu, W.N. Zhang and G.D. Wang, Acta Metall. Sin. 45 (2009) 573. (in Chinese)

    CAS  Google Scholar 

  38. X.M. Qin, L.Q. Chen, H.S. Di and W. Deng, Acta Metall. Sin. 47 (2011) 1117. (in Chinese)

    CAS  Google Scholar 

  39. A. Brahmi and R. Borrelly, Acta Mater. 45(997) 1889.

  40. Z.Q. Wu, Z.Y. Tang, H.Y. Li and H.D. Zhang, Acta Metall. Sin. 48 (2012) 593. (in Chinese)

    Article  CAS  Google Scholar 

  41. X.M. Qin, L.Q. Chen, W. Deng and H. S. Di, Chin. J. Mater. Res. 25 (2011) 278. (in Chinese)

    CAS  Google Scholar 

  42. F.Y. Lu, P. Yang, L. Meng, F.E. Cui and H. Ding, J. Mater. Sci. Technol. 27 (2011) 257.

    Article  CAS  Google Scholar 

  43. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy and D. Barbier, Curr. Opin. Solid State Mater. Sci. 15(4) (2011) 141.

    Article  CAS  Google Scholar 

  44. J.P. Hirth, Metall. Trans. A 1 (1970) 2367.

    Google Scholar 

  45. G.B. Olson and M. Cohen, Metall. Trans. A 7 (1976) 1897.

    Google Scholar 

  46. P.H. Adler, G.B. Olson and W.S. Owen, Metall. Trans. A 17 (1986) 1725.

    Article  Google Scholar 

  47. A.P. Miodownik and Z. Metallkunde, 89 (1998) 840.

  48. I.A. Yakubtsov, A. Airapour and D.D. Perovic, Acta Mater. 47 (1999) 1271.

    Article  CAS  Google Scholar 

  49. A. Dumay, J.P. Chateau, S. Allain, S. Migot, O. Bouaziz, Mater. Sci. Eng. A 483–484 (2008) 184.

    Google Scholar 

  50. J.E. Jin and Y.K. Lee, Mater. Sci. Eng. A 527 (2009) 157.

    Article  Google Scholar 

  51. Y.J. Dai, D. Tang, Z.L. Mi, H.T. Jiang and J.C. Lu, J. Mater. Eng. (7) (2009) 39. (in Chinese)

  52. H.J. Lu, N.Q. Zhu, Y.L. He and L. Li, Trans. Mater. Heat Treat. 32(12) (2011) 155. (in Chinese)

    Google Scholar 

  53. Y.H. Rong, Q.P. Meng, G. He and Z.Y. Xu, J. Shanghai Jiaotong Univ. 37 (2003) 171. (in Chinese)

    CAS  Google Scholar 

  54. S.H. Park, I.S. Chung and T.W. Kim, Oxid. Met. 49 (1998) 349.

    Article  CAS  Google Scholar 

  55. A. Inoue, Y. Kojima, T. Minemura and T. Masumoto, Metall. Trans. A 12 (1981) 1245.

    Article  CAS  Google Scholar 

  56. D.J. Schmatz, Trans. Am. Soc. Met. 52 (1960) 898.

    CAS  Google Scholar 

  57. Y.G. Kim, J.K. Han and E.W. Lee, Metall. Trans. A 17 (1986) 2097.

    Article  Google Scholar 

  58. J. Charles, A. Berghezan, A. Lutts and P.L. Dancoisne, Met. Prog. 119 (1981) 71.

    CAS  Google Scholar 

  59. J.G. Duh, J.W. Lee and C.J. Wang, J. Mater. Sci. 23 (1988) 2649.

    Article  CAS  Google Scholar 

  60. H. Schenck, E. Schmidtman and H. Muller, Arch. Eisenhuttenw 31 (1960) 121.

    CAS  Google Scholar 

  61. P.R.S. Jackson and G.R. Wallwork, Oxid. Met. 21(3–4) (1984) 135.

    Article  CAS  Google Scholar 

  62. P. Tomaszewicz and G.R. Wallwork, Corrosion 40(4) (1984) 152.

    Article  CAS  Google Scholar 

  63. J.P. Sauer, R.A. Rapp and J.P. Hirth, Oxid. Met. 18(5–6) (1982) 285.

    Article  CAS  Google Scholar 

  64. H. Erhart, R. Wang and R.A. Rapp, Oxid. Met. 21(1–2) (1984) 81.

    Article  CAS  Google Scholar 

  65. C.H. Kao and C.M. Wan, J. Mater. Sci. 22 (1987) 3203.

    Article  CAS  Google Scholar 

  66. C.H. Kao and C.M. Wan, J. Mater. Sci. 23 (1988) 1943.

    Article  CAS  Google Scholar 

  67. S.C. Chang, J.Y. Liu and H.K. Juang, Corrosion 51(5) (1995) 399.

    Article  CAS  Google Scholar 

  68. C.J. Wang and Y.C. Chang, Mater. Chem. Phys. 76 (2002) 151.

    Article  CAS  Google Scholar 

  69. C.S. Wang, C.Y. Tsai, C.G. Chao and T.F. Liu, Mater. Trans. 48 (2007) 2973.

    Article  CAS  Google Scholar 

  70. Y.H. Tuan, C.S. Wang, C.Y. Tsai, C.G. Chao and T.F. Liu, Mater. Chem. Phys. 114 (2009) 595.

    Article  CAS  Google Scholar 

  71. S.M. Zhu, S.C. Tjong, Scr. Mater. 36 (1997) 317.

    Article  CAS  Google Scholar 

  72. S.T. Shih, C.Y. Tsai and T.P. Perng, Corrosion 49(1) (1993) 130.

    Article  CAS  Google Scholar 

  73. S.C. Chang, W.H. Weng, H.C. Chen, S.J. Lin and P.C.K. Chung, Wear 181–183 (1995) 511.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqing Chen.

Additional information

Liqing Chen is a professor in materials science at the State Key Laboratory of Rolling and Automation (RAL), Northeastern University (NEU) of China. He received his B. S. degree in Materials Science and Engineering from Northeast University of Technology in 1988 and was awarded Ph.D. degree in Materials Science at Northeastern University in 1995. During 1995–2004, he had been working as a research associate and an associate research fellow at the Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS). His research interests include forming process, microstructures and mechanical properties of advanced metallic materials, processing technologies and mechanical property characterization of special steels and alloys, microalloying and microstructural evolution of the ferrous materials, and light metal-matrix composites. Dr. Chen has authored and co-authored more than 100 peer-reviewed papers. He is now the member of the editorial committees of Acta Metallurgica Sinica, Acta Metallurgica Sinica (English Letters), Journal of Materials Science & Technology, Advances in Materials Research-An International Journal, and Acta Materiae Compositae Sinica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Zhao, Y. & Qin, X. Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review. ACTA METALL SIN 26, 1–15 (2013). https://doi.org/10.1007/s40195-012-0501-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-012-0501-x

Key Words

Navigation