Skip to main content
Log in

Photocatalytic and Antibacterial Activities of Ag/ZnO Nanocomposities Fabricated by Co-Precipitation Method

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A Ag/ZnO nanocomposite has been synthesized and characterized for investigating its photocatalytic activity. The morphology and particle size of the Ag/ZnO was studied by scanning electron microscope (SEM) and the microstructure of the as-synthesized nanocomposite was confirmed by X-ray diffraction (XRD) analysis. The elemental composition of the metal oxide was determined by energy dispersion spectrometry (EDS). Diffuse reflectance spectra (DRS), Photoluminescence (PL) spectra, and Fourier transform infrared spectroscopy (FTIR) were also studied for characterizing the nanocomposite. The average particle size was found to be around 20–30 nm. Photocatalytic activity of Ag/ZnO has been investigated over methyl violet (6B) dye under UV and visible light irradiation. The degradation of methyl violet (6B) dye using ZnO and Ag/ZnO was compared and found that Ag/ZnO composite is more efficient than ZnO. The rate of disappearance of dye was monitored spectrophotometrically in the maximum visible absorption wavelength and the extent of degradation was discussed in terms of Langmuir–Hinshelwood model. The Ag/ZnO composite was found capable of degrading the industrial dye effluent. Effect of H2O2 addition on dye degradation by the Ag/ZnO was investigated and Ag/ZnO was found to be an effective antimicrobial agent. Reusability of Ag/ZnO catalyst was also tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Alammar, A.V. Mudring, J. Mater. Sci. 44, 3218 (2009)

    Article  Google Scholar 

  2. D. Chatterjee, S. Dasgupta, J. Photochem. Photobiol. C 6, 186 (2005)

    Article  Google Scholar 

  3. V. Ramaswamy, N.B. Jagtap, S. Vijayanand, D.S. Bhange, P.S. Awati, Mater. Res. Bull. 43, 1145 (2008)

    Article  Google Scholar 

  4. M. Janus, A.W. Morawski, Appl. Catal. B 75, 118 (2007)

    Article  Google Scholar 

  5. A.A. Khodja, T. Sehili, J.F. Pilichowski, P.J. Boule, Photochem. Photobiol. A 141, 231 (2001)

    Article  Google Scholar 

  6. N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A 162, 317 (2004)

    Article  Google Scholar 

  7. C.A.K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, P. Peralta-Zamora, Chemosphere 40, 433 (2000)

    Article  Google Scholar 

  8. B. Dindar, S.J. Icli, J. Photochem. Photobiol. A 140, 263 (2001)

    Article  Google Scholar 

  9. J. Zhi-gang, P. Kuan-kuan, L. Yan-hua, Z. Rong-sun, Trans. Nonferrous Met. Soc. China 22, 873 (2012)

    Article  Google Scholar 

  10. K. Yong, S. Jung, Chem. Commun. (Lond) 47, 2643 (2011)

    Article  Google Scholar 

  11. B. Ahmmad, Y. Kusumoto, S. Somekawa, M. Ikeda, Catal. Commun. 9, 1410 (2008)

    Article  Google Scholar 

  12. Y. Yang, L.L. Ren, C. Zhang, S. Huang, T.X. Liu, ACS Appl. Mater. Interfaces 3, 2779 (2011)

    Article  Google Scholar 

  13. S. Kundu, A. Kafizas, G. Hyett, A. Mills, J.A. Darr, I.P. Parkin, J. Mater. Chem. 21, 6854 (2011)

    Article  Google Scholar 

  14. A. Kafizas, C.W. Dunnill, I.P. Parkin, Phys. Chem. Chem. Phys. 13, 13827 (2011)

    Article  Google Scholar 

  15. D. Zhang, F. Zeng, J. Mater. Sci. 47, 2155 (2012)

    Article  Google Scholar 

  16. S. Sarkar, A. Makhal, T. Bora, S. Baruah, J. Dutta, S.K. Pal, Phys. Chem. Chem. Phys. 13, 12488 (2011)

    Article  Google Scholar 

  17. Y.A. Zhang, J.Q. Xu, P.C. Xu, Y.H. Zhu, X.D. Chen, W.J. Yu, Nanotechnology 21, 285501 (2010)

    Article  Google Scholar 

  18. Y.G. Chang, J. Xu, Y.Y. Zhang, S.Y. Ma, L.H. Xin, L.N. Zhu, C.T. Xut, J. Phys. Chem. C 113, 18761 (2009)

    Article  Google Scholar 

  19. Z.M. Yang, P. Zhang, Y.H. Ding, Y. Jiang, Z.L. Long, W.L. Dai, Mater. Res. Bull. 46, 1625 (2011)

    Article  Google Scholar 

  20. J. Du, J. Zhang, Z. Liu, B. Han, T. Jian, Y. Huang, Langmuir 22, 1307 (2006)

    Article  Google Scholar 

  21. Y.F. Wang, J.H. Yao, G. Jia, H. Lei, Acta Phys. Pol., A 119, 451 (2011)

    Google Scholar 

  22. Y.C. Lu, Y.H. Lin, D.J. Wang, L.L. Wang, T.F. Xie, T.F. Jiang, J. Phys. D 44, 315502 (2011)

    Article  Google Scholar 

  23. J. Wang, X.M. Fan, Z.W. Zhou, K. Tian, Mater. Sci. Eng. B 176, 176 (2011)

    Google Scholar 

  24. W.W. Lu, S.Y. Gao, J.J. Wang, J. Phys. Chem. C 112, 16792 (2008)

    Article  Google Scholar 

  25. K. Kim, P.C. Debnath, D.H. Lee, S. Kim, S.Y. Lee, Nanoscale Res. Lett. 6, 552 (2011)

    Article  Google Scholar 

  26. R.S. Zeferino, M.B. Flores, U. Pal, J. Appl. Phys. 109, 014308 (2011)

    Article  Google Scholar 

  27. H.I. Hsiang, R.Q. Yao, Mater. Chem. Phys. 104, 1 (2007)

    Article  Google Scholar 

  28. V.V. Deshpande, M.M. Patil, S.C. Navale, V. Ravi, Bull. Mater. Sci. 28, 205 (2005)

    Article  Google Scholar 

  29. D. Yanling, Z. Sha, W. Ping, J. Wuhan Univ. Technol. 27, 615 (2012)

    Article  Google Scholar 

  30. D. Zhang, F. Zeng, Res. Chem. Intermed. 36, 1055 (2010)

    Article  Google Scholar 

  31. F. Sun, X. Qiao, F. Tan, W. Wang, X. Qiu, J. Mater. Sci. 47, 7262 (2012)

    Article  Google Scholar 

  32. D. Zhang, Russ. J. Phys. Chem. A 85(8), 1416 (2011)

    Article  Google Scholar 

  33. A.H. Shah, E. Manikandan, M. BasheerAhmedand, V. Ganesan, J. Nanomed. Nanotechnol. 4(3), 1 (2013)

    Google Scholar 

  34. C. Namasivayam, R. Jeyakumar, R.T. Yamuna, Waste Manag. 14, 643 (1994)

    Article  Google Scholar 

  35. M.A. Hasnat, I.A. Siddiquey, S.M. Saiful, Indian J. Chem. A 42, 1865 (2003)

    Google Scholar 

  36. X. Naskar, S.A. Pillay, M. Chanda, Photochem. Photobiol. A 113, 257 (1998)

    Article  Google Scholar 

  37. D. Zhang, Pol. J. Chem. Technol. 14(2), 42 (2012)

    Article  Google Scholar 

  38. D. Lin, H. Wu, R. Zhang, W. Pan, Chem. Mater. 21, 3479 (2009)

    Article  Google Scholar 

  39. A. Syoufian, K. Nakashima, J. Coll. Int. Sci. 317, 512 (2008)

    Article  Google Scholar 

  40. I.A. Salem, Trans. Met. Chem. 25, 599 (2000)

    Article  Google Scholar 

  41. M. Kulkarni, P. Thakur, Chem. Chem. Technol. 4, 265 (2010)

    Google Scholar 

  42. S. Shintre, P. Thakur, J. Environ. Sci. Eng. 50, 299 (2008)

    Google Scholar 

  43. T. Gordona, B. Perlsteina, O. Houbarab, I. Felnerc, E. Baninb, S. Margela, Coll. Surf. A 374, 1 (2011)

    Article  Google Scholar 

  44. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Int. J. Nanomed. 7, 6003 (2012)

    Article  Google Scholar 

  45. A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Truck, Am. J. Clin. Pathol. 45, 493 (1966)

    Google Scholar 

  46. C. Karunakaran, Rajeshwari, P. Gomathisankar, J. Alloys Compd. 508, 587 (2010)

    Article  Google Scholar 

  47. L. Zung, L. Jiang, Y. Ding, J. Nanopart. Res. 12, 1625 (2010)

    Article  Google Scholar 

  48. G.J. Zhao, S.E. Stevens, Biometals 11, 27 (1998)

    Article  Google Scholar 

  49. J.A. Spadaro, T.J. Berger, S.D. Barranco, S.E. Chapin, R.O. Becker, Microb. Agents Chemother. 6, 637 (1974)

    Article  Google Scholar 

  50. B. Sadeghi, M. Jamali, S. Kia, A. Amininia, S. Ghafari, Int. J. Nano Dim. 1, 119 (2010)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Professors Tuula T. Pakkanen and Mika Suvanto, Department of Chemistry, University of Eastern Finland, Finland, for providing XRD, SEM, and EDS facilities for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abdus Subhan.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subhan, M.A., Awal, M.R., Ahmed, T. et al. Photocatalytic and Antibacterial Activities of Ag/ZnO Nanocomposities Fabricated by Co-Precipitation Method. Acta Metall. Sin. (Engl. Lett.) 27, 223–232 (2014). https://doi.org/10.1007/s40195-014-0038-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0038-2

Keywords

Navigation