Skip to main content
Log in

Effect of Carbon Nanotube Orientation on Mechanical Properties and Thermal Expansion Coefficient of Carbon Nanotube-Reinforced Aluminum Matrix Composites

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Carbon nanotube-reinforced 2009Al (CNT/2009Al) composites with randomly oriented CNTs and aligned CNTs were fabricated by friction stir processing (FSP) and FSP-rolling, respectively. The CNT/2009Al composites with aligned CNTs showed much better tensile properties at room temperature and elevated temperature compared with those with the randomly oriented CNTs, which is mainly attributed to larger equivalent aspect ratio of the CNTs and avoidance of preferential fracture problems. However, much finer grain size was not beneficial to obtaining high strength above 473 K. The aligned CNTs resulted in tensile anisotropy, with the best tensile properties being achieved along the direction of CNT aligning. As the off-axis angle increased, the tensile properties were reduced due to the weakening of the load transfer ability. Furthermore, aligned CNTs resulted in much lower coefficient of thermal expansion compared with randomly oriented CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.B. Miracle, Compos. Sci. Technol. 65, 2526 (2005)

    Article  Google Scholar 

  2. J.M. Torralba, C.E. da Costa, F. Velasco, J. Mater. Process. Technol. 133, 203 (2003)

    Article  Google Scholar 

  3. Z.Y. Liu, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, Y. Liu, Acta Metall. Sin. 46, 1121 (2010). (in Chinese)

    Article  Google Scholar 

  4. J.S. Moya, S. Lopez-Esteban, C. Pecharroman, Prog. Mater Sci. 52, 1017 (2007)

    Article  Google Scholar 

  5. P. Ajayan, O. Zhou, Applications of Carbon Nanotubes (Springer, Berlin, 2001), p. 391

    Google Scholar 

  6. M. Trojanowicz, Trends Anal. Chem. 25, 480 (2006)

    Article  Google Scholar 

  7. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Phys. Rev. B 58, 14013 (1998)

    Article  Google Scholar 

  8. Z. Han, A. Fina, Prog. Polym. Sci. 36, 914 (2011)

    Article  Google Scholar 

  9. E.T. Thostenson, Z. Ren, T.W. Chou, Compos. Sci. Technol. 61, 1899 (2001)

    Article  Google Scholar 

  10. S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55, 41 (2010)

    Article  Google Scholar 

  11. T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, J. Mater. Res. 13, 2445 (1998)

    Article  Google Scholar 

  12. Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, Z.Y. Ma, Compos. A 43, 2161 (2012)

    Article  Google Scholar 

  13. S.J. Xu, B.L. Xiao, Z.Y. Liu, W.G. Wang, Z.Y. Ma, Acta Metall. Sin. 48, 882 (2012). (in Chinese)

    Article  Google Scholar 

  14. H.J. Choi, J.H. Shin, B.H. Min, J.S. Park, D.H. Bae, J. Mater. Res. 24, 2610 (2009)

    Article  Google Scholar 

  15. D.H. Nam, S.I. Cha, B.K. Lim, H.M. Park, D.S. Han, S.H. Hong, Carbon 50, 2417 (2012)

    Article  Google Scholar 

  16. D.H. Nam, Y.K. Kim, S.I. Cha, S.H. Hong, Carbon 50, 4809 (2012)

    Article  Google Scholar 

  17. L. Jiang, G. Fan, Z. Li, X. Kai, D. Zhang, Z. Chen, S. Humphries, G. Heness, W.Y. Yeung, Carbon 49, 1965 (2011)

    Article  Google Scholar 

  18. L. Cao, Z. Li, G. Fan, L. Jiang, D. Zhang, W.J. Moon, Y.S. Kim, Carbon 50, 1057 (2012)

    Article  Google Scholar 

  19. C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li, Q. Cui, Adv. Mater. 19, 1128 (2007)

    Article  Google Scholar 

  20. Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Carbon 50, 1843 (2012)

    Article  Google Scholar 

  21. Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Compos. Sci. Technol. 72, 1826 (2012)

    Article  Google Scholar 

  22. Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Carbon 62, 35 (2013)

    Article  Google Scholar 

  23. Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Carbon 69, 264 (2014)

    Article  Google Scholar 

  24. K.T. Kim, J. Eckert, G. Liu, J.M. Park, B.K. Lim, S.H. Hong, Scr. Mater. 64, 181 (2011)

    Article  Google Scholar 

  25. R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50, 1 (2005)

    Article  Google Scholar 

  26. Z.Y. Ma, Metall. Mater. Trans. A 39, 642 (2008)

    Article  Google Scholar 

  27. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Carbon 47, 570 (2009)

    Article  Google Scholar 

  28. M. Nganbe, M. Heilmaier, Int. J. Plast. 25, 822 (2009)

    Article  Google Scholar 

  29. T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993), p. 120

    Book  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (Nos. 2011CB932603 and 2012CB619600), and the National Natural Science Foundation of China (No. 51331008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Ma.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z.Y., Xiao, B.L., Wang, W.G. et al. Effect of Carbon Nanotube Orientation on Mechanical Properties and Thermal Expansion Coefficient of Carbon Nanotube-Reinforced Aluminum Matrix Composites. Acta Metall. Sin. (Engl. Lett.) 27, 901–908 (2014). https://doi.org/10.1007/s40195-014-0136-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0136-1

Keywords

Navigation