Skip to main content

Advertisement

Log in

Developments in Processing of Functionally Gradient Metals and Metal–Ceramic Composites: A Review

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Functionally gradient/graded materials (FGMs), an emerging new class of materials, are the outcome of the recent innovative concepts in materials technology. FGMs are in their early stages of evolution and expected to have a strong impact on the design and development of new components and structures with better performance. FGMs exhibit gradual transitions in the microstructure and/or the composition in a specific direction, the presence of which leads to variation in the functional performance within a part. The presence of gradual transitions in material composition in FGMs can reduce or eliminate the deleterious stress concentrations and result in a wide gradation of physical and/or chemical properties within the material. Functionally graded metal–ceramic composites are also getting the attention of the researchers. Among the fabrication routes for FGMs such as chemical vapour deposition, physical vapour deposition, the sol–gel technique, plasma spraying, molten metal infiltration, self propagating high temperature synthesis, spray forming, centrifugal casting, etc., the ones based on solidification route are preferred for FGMs because of their economics and capability to make large size products. The present paper discusses and compares various solidification processing techniques available for the fabrication of functionally gradient metals and metal–ceramic composites and lists their properties and possible applications. The other processing methods are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Niino, S. Maeda, ISIJ Int. 30, 699 (1990)

    Article  Google Scholar 

  2. A. Mortensen, S. Suresh, Int. Mater. Rev. 40(6), 239 (1995)

    Article  Google Scholar 

  3. S. Suresh, A. Mortensen, Int. Mater. Rev. 42(3), 85 (1997)

    Article  Google Scholar 

  4. J.J. Sobczak, L. Drenchev, J. Mater. Sci. Technol. 29, 297 (2013)

    Article  Google Scholar 

  5. E. Arzt, M.F. Ashby, K.E. Eastreling, Metall. Trans. A 14, 211 (1983)

    Article  Google Scholar 

  6. W. Henning, C. Melzer, S. Mielke, Metallurgy 46, 436 (1992)

    Google Scholar 

  7. S.F. Corbin, X. Zhao-jie, H. Henein, P.S. Apte, Mater. Sci. Eng., A 262, 192 (1999)

    Article  Google Scholar 

  8. P. Zhao, S.B. Guo, G.H. Liu, Y.X. Chen, J.T. Li, J. Alloys Compd. 601, 289 (2014)

    Article  Google Scholar 

  9. A. Nordmark, Stoberiet 69(7), 6 (1992)

    Google Scholar 

  10. L. Lajoye, M. Suery, in International Symposium on “Advances in cast reinforced metal composites”, Chicago, IL, 1988, ed. by S.G. Fishman, A.K. Dhingra (ASM International, Materials Park, OH, 1988) pp. 15–20

  11. L. Lajoye, M. Suery, in Solidification Processing 1987, ed. by J. Beech, H. Jones (The Institute of Metals, 1988) p. 443

  12. G.S. Hanumanth, G.A. Irons, S. Lafreniere, Metall. Trans. B 23, 753 (1992)

    Article  Google Scholar 

  13. G.A. Rons, K. Owusu-Boahen, Metall. Trans. B 26, 981 (1995)

    Article  Google Scholar 

  14. M. Pourmajidian, F. Akhlaghi, J. Mater. Eng. Perform. 23, 444 (2014)

    Article  Google Scholar 

  15. P. Diouf, A. Jones, Metall. Mater. Trans. A 41, 603 (2010)

    Article  Google Scholar 

  16. X.H. Qin, L.X. Han, C.G. Fan, L.J. Rong, Y.Y. Li, J. Mater. Sci. Lett. 21, 665 (2002)

    Article  Google Scholar 

  17. G. Chirita, I. Stefanescu, J. Barbosa, H. Puga, D. Soares, F.S. Silva, Int. J. Cast Met. Res. 22, 382 (2009)

    Article  Google Scholar 

  18. B.P. Krishnan, P.K. Rohatgi, Metall. Technol. 11, 41 (1984)

    Article  Google Scholar 

  19. A. Baneerji, P.K. Rohatgi, W. Reif, in Proceedings of Europe MRS Conference Advanced Materials Research and development of Transportation of Composites (Strassburg, France, 1985)

  20. A. Velhinho, P.D. Sequeira, R. Martins, G. Vignoles, F. Braz Fernandes, J.D. Botas, L.A. Rocha, Nucl. Inst. Methods Phys. Res. B 200, 295 (2003)

    Article  Google Scholar 

  21. R. Rodríguez-Castro, R.C. Wetherhold, M.H. Kelestemur, Mater. Sci. Eng., A 323, 445 (2002)

    Article  Google Scholar 

  22. T.P.D. Rajan, R.M. Pillai, B.C. Pai, in Proceedings of 3rd International Conference on Materials Processing for Properties and Performance, Singapore, 24–26 November 2004, ed. by K.A. Khor (Institute of Materials (East Asia), Singapore, 2004) p. 33

  23. K. Durai Babu, Dissertation, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, India, 2005

  24. B.A. Srinivasan, Dissertation, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, India, 2006

  25. T.P.D. Rajan, R.M. Pillai, B.C. Pai, J. Alloys Compd. 453, L4 (2008)

    Article  Google Scholar 

  26. Y. Fukui, K. Takashima, C.B. Panton, J. Mater. Sci. 29, 2281 (1994)

    Article  Google Scholar 

  27. Y. Watanabe, S. Oike, Acta Mater. 53, 1631 (2005)

    Article  Google Scholar 

  28. Y. Watanabe, N. Yamanaka, Y. Fukui, Metall. Mater. Trans. A 30, 3253 (1999)

    Article  Google Scholar 

  29. Y. Watanabe, H. Eryu, K. Matsuura, Acta Mater. 49, 775 (2001)

    Article  Google Scholar 

  30. Z. Humberto Melgarejo, O. Marcelo Sua´rez, K. Sridharan, Scr. Mater. 55, 95 (2006)

    Article  Google Scholar 

  31. Y. Watanabe, T. Nakamura, Intermetallics 9, 33 (2001)

    Article  Google Scholar 

  32. J. Zhang, Z. Fan, Y. Wang, B. Zhou, Mater. Des. 21, 149 (2000)

    Article  Google Scholar 

  33. D.R. Herling, W.H. Hunt, Low-cost cast aluminum metal matrix composites have arrived, in Affordable Metal Matrix Composites for High Performance Applications II (Minerals, Metals & Materials Society, Warrendale, Pennsylvania, 2004) pp. 13–23

  34. P.S. Grant, Prog. Mater Sci. 39, 497 (1995)

    Article  Google Scholar 

  35. S.M.L. Nai, M. Gupta, C.Y.H. Lim, Compos. Sci. Technol. 63, 1 (2003)

    Article  Google Scholar 

  36. B. Su, H.G. Yan, J.H. Chen, P.L. Zeng, G. Chen, C.C. Chen, J. Mater. Eng. Perform. 22, 1355 (2013)

    Article  Google Scholar 

  37. Y.T. Pei, V. Ocelik, JThM De Hosson, Acta Mater. 50, 2035 (2002)

    Article  Google Scholar 

  38. K. Shah, I. Haq, A. Khan, S.A. Shah, M. Khan, A.J. Pinkerton, Mater. Des. 54, 531 (2014)

    Article  Google Scholar 

  39. B.S. Zhang, M.M. Gasik, Comput. Mater. Sci. 25, 264 (2002)

    Article  Google Scholar 

  40. K. Zhang, W.P. Shen, C.C. Ge, Acta Metall. Sin. (Engl. Lett.) 20, 59 (2007)

    Article  Google Scholar 

  41. S. Maleksaeediw, M.H. Paydar, J. Am. Ceram. Soc. 93, 413 (2010)

    Article  Google Scholar 

  42. J. Stabik, A. Dybowska, M. Chomiak, J. Ach, Mater. Manuf. Eng. 43, 153 (2010)

    Google Scholar 

  43. S.F. Corbin, D.S. Wilkinson, Acta Metall. Mater. 42, 1311 (1994)

    Article  Google Scholar 

  44. T.P.D. Rajan, R.M. Pillai, B.C. Pai, Int. J. Cast Met. Res. 21(1–4), 214 (2008)

    Article  Google Scholar 

  45. T.P.D. Rajan, R.M. Pillai, B.C. Pai, Mater. Charact. 61, 923 (2010)

    Article  Google Scholar 

  46. E. Jayakumar, T.P.D. Rajan, B.C. Pai, Trans. Ind. Inst. Met. 65, 681 (2012)

    Article  Google Scholar 

  47. T.P.D. Rajan, R.M. Pillai, B.C. Pai, A Method for Processing Functionally Graded Hybrid Metal Matrix Composites, Indian Patent 0903DEL2006, 2006

Download references

Acknowledgments

The authors would like to thank the Director, CSIR-NIIST and members, MSTD for their support and encouragement. We are grateful to the research scholars Mr. E. Jayakumar, Mr. K. M. Sree Manu and Mr. Akhil S. Karun for their contribution towards the preparation of manuscript and the CSIR, New Delhi towards the funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Pai.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, T.P.D., Pai, B.C. Developments in Processing of Functionally Gradient Metals and Metal–Ceramic Composites: A Review. Acta Metall. Sin. (Engl. Lett.) 27, 825–838 (2014). https://doi.org/10.1007/s40195-014-0142-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0142-3

Keywords

Navigation