Skip to main content
Log in

Influences of Hot-Isostatic-Pressing Temperature on the Microstructure, Tensile Properties and Tensile Fracture Mode of 2A12 Powder Compact

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

2A12 aluminum alloy powders were hot-isostatic-pressed (HIPed) at representative temperatures for investigating the variation in microstructure, tensile property and fracture mode of the powder compact. It was found that the microstructure of raw powders changed from a dendrite structure to an equiaxed structure from room temperature to 600 °C. The liquid phase produced by the eutectic reaction in the powder was gradually increased and finally formed a liquid pathway that ran through the entire powder from 490 to 600 °C. Prior particle boundaries were observed in the powder compacts HIPed at 490 and 520 °C. The liquid phase in the powder compacts was squeezed into the powder boundaries and the triple points of powder when HIPed at 580 °C. However, the liquid phase located at the triple points of the powder was forced out and moved toward a small powder particle by HIP pressure under an HIPing temperature of 600 °C, which led to a decrease in the mechanical properties and relative density. Better comprehensive properties were obtained at HIPing temperatures of 490 and 580 °C. The low ductility exhibited by the P/M aluminum alloy HIPed at different temperatures was believed to arise from a combination of the existence of oxide film on the powder particle surface and the distribution characteristics of the liquid phase. Finally, three typical types of de-cohesion were classified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Nakai, T. Eto, Mater. Sci. Eng. A 285, 62 (2000)

    Article  Google Scholar 

  2. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, Mater. Sci. Eng. A 280, 37 (2000)

    Article  Google Scholar 

  3. J. Capus, Met. Powder Rep. 70, 294 (2015)

    Article  Google Scholar 

  4. J. Capus, Met. Powder Rep. 68, 12 (2013)

    Google Scholar 

  5. A. Heinz, A. Haszler, C. Keidel, Mater. Sci. Eng. A 280, 102 (2000)

    Article  Google Scholar 

  6. G.B. Schaffer, T.B. Sercombe, R.N. Lumley, Mater. Chem. Phys. 67, 85 (2001)

    Article  Google Scholar 

  7. J.M. Martín, F. Castro, J. Mater. Process. Technol. 144, 814 (2003)

    Article  Google Scholar 

  8. K.H. Min, S.P. Kang, B. Lee, J. Lee, Y.D. Kim, J. Alloys Compd. 419, 290 (2006)

    Article  Google Scholar 

  9. R.M. German, Sintering with a Liquid Phase, 9th edn. (Springer, Boston, 2014), pp. 247–303

    Google Scholar 

  10. Z.Y. Liu, T.B. Sercombe, G.B. Schaffer, Metall. Mater. Trans. A 38, 1351 (2007)

    Article  Google Scholar 

  11. C.D. Boland, R.L. Hexemer, I.W. Donaldson, D.P. Bishop, Mater. Sci. Eng. A 559, 902 (2013)

    Article  Google Scholar 

  12. G.B. Schaffer, B.J. Hall, S.J. Bonner, S.H. Huo, T.B. Sercombe, Acta Mater. 54, 131 (2006)

    Google Scholar 

  13. A. Gökçe, F. Fındık, A.O. Kurt, Mater. Charact. 62, 730 (2011)

    Article  Google Scholar 

  14. C. Padmavathi, A. Upadhyaya, Trans. Indian Inst. Met. 64, 345 (2011)

    Article  Google Scholar 

  15. T.B. Sercombe, Mater. Sci. Eng. A 341, 163 (2003)

    Article  Google Scholar 

  16. C.L. Qiu, M.M. Attallah, X.H. Wu, P. Andrews, Mater. Sci. Eng. A 564, 176 (2013)

    Article  Google Scholar 

  17. J.T. Staley Jr., M. Tiryakioğlu, J. Campbell, Mater. Sci. Eng. A 465, 136 (2007)

    Article  Google Scholar 

  18. L. Ceschini, A. Morri, G. Sambogna, J. Mater. Process. Technol. 204, 231 (2008)

    Article  Google Scholar 

  19. G. Ran, J. Zhou, Q.G. Wang, J. Alloys Compd. 421, 80 (2006)

    Article  Google Scholar 

  20. M.A. Islam, Z.N. Farhat, Wear 271, 1594 (2011)

    Article  Google Scholar 

  21. L. Chang, W. Sun, Y. Cui, R. Yang, Mater. Sci. Eng. A 599, 186 (2014)

    Article  Google Scholar 

  22. Q. Wang, S.G. Li, H.J. Lv, G. Shi, S.Y. Huang, J.L. Shi, Titan. Ind. Prog. 5, 16 (2010)

    Google Scholar 

  23. S. Yu, L.H. Lang, S. Yao, G. Wang, X.N. Huang, Y.Q. Xu, Chin. J. Nonferr. Metal. 10, 2745 (2015)

    Google Scholar 

  24. P.B. Li, T.J. Chen, S.Q. Zhang, R.G. Guan, Metals 5, 547 (2015)

    Article  Google Scholar 

  25. Y. Zhang, S.K. Li, S.D. Chen, Powder Metall. Ind. 6, 13 (1998)

    Google Scholar 

  26. Y.N. Dai, Binary Alloy Phase Diagrams, 4th edn. (Science Press, Beijing, 2009), pp. 56–59

    Google Scholar 

  27. J. Mi, P.S. Grant, Acta Mater. 56, 1597 (2008)

    Article  Google Scholar 

  28. C.X. Gu, Dissertation, South China University of Technology, 2015 (in Chinese)

  29. R.M. German, A. Lal, J. Liu, Acta Mater. 47, 4615 (1999)

    Article  Google Scholar 

  30. Y. Xue, Dissertation, Beihang University, 2011 (in Chinese)

  31. A.K. Jha, Dissertation, Illinois Institute of Technology, 1983

  32. L. Dudas, W.A. Dean, Int. J. Powder Metall. 5, 113 (1969)

    Google Scholar 

  33. B.Y. Huang, C.G. Li, L.K. Shi, G.Z. Qiu, T.Y. Zuo, China Materials Engineering Canon, 3rd edn. (Chemical Industry Press, Beijing, 2005), pp. 64–69

    Google Scholar 

  34. G.C. Guo, Liquid-Sintering Powder Metallurgy Material, 2nd edn. (Chemical Industry Press, Beijing, 2003), pp. 23–29

    Google Scholar 

  35. A. Mohammadzadeh, M. Azadbeh, H. Danninger, Powder Metall. 58, 123 (2015)

    Article  Google Scholar 

  36. M. Azadbeh, H. Danninger, C. Gierl-Mayer, Powder Metall. 56, 342 (2013)

    Article  Google Scholar 

  37. Y. Liu, X. Luo, Z. Li, J. Mater. Process. Technol. 214, 165 (2014)

    Article  Google Scholar 

  38. G.B. Schaffer, Mater. Forum 28, 65 (2004)

    Google Scholar 

  39. J. Campbell, J. Mater. Sci. 51, 96 (2016)

    Article  Google Scholar 

  40. K. Kondoh, A. Kimura, R. Watanabe, Powder Metall. 44, 161 (2001)

    Article  Google Scholar 

  41. G.N. Grayson, G.B. Schaffer, J.R. Griffiths, Mater. Sci. Eng. A 454–455, 99 (2007)

    Article  Google Scholar 

  42. T. Pieczonka, T. Schubert, S. Baunack, B. Kieback, Mater. Sci. Eng. A 478, 251 (2008)

    Article  Google Scholar 

  43. M. Balog, C. Poletti, F. Simancik, M. Walcher, W. Rajner, J. Alloys Compd. 509, 235 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are given to Professor Li-hui Lang for useful discussion and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Lang, LH., Yu, WJ. et al. Influences of Hot-Isostatic-Pressing Temperature on the Microstructure, Tensile Properties and Tensile Fracture Mode of 2A12 Powder Compact. Acta Metall. Sin. (Engl. Lett.) 29, 963–974 (2016). https://doi.org/10.1007/s40195-016-0482-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0482-2

Keywords

Navigation