Skip to main content

Advertisement

Log in

Effects of lead and cadmium on the immune system and cancer progression

  • Review article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In our daily life, we are surrounded by harmful pollutants, including heavy metals that are not visible in the macroscopic view easily. Heavy metals can disrupt different aspects of human health, such as the immune system which has gained a lot of attention in recent decades. This had led to its rapid progression and new insights into its alterations in different diseases especially cancer. Heavy metals are non-biodegradable materials that exist in different parts of the food cycle, such as fruits and vegetables as commonly consumed foods and also unexpected sources such as street dust, that exists in the streets that we pass every day, soil, air, and water. These heavy metals can enter the human body through respiratory, cutaneous, and gastrointestinal pathways and then accumulate in different organs, leading to their encountering with various parts of the body. These sources and natural characteristics of heavy metals facilitate their interaction with the immune system. In this review, we investigated the effect of lead and cadmium, as pollutants that exist in many different parts of the human environment, on the immune system which is known to have a key role in the pathophysiology of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Behbahani M, Ghareh Hassanlou P, Amini MM, Omidi F, Esrafili A, Farzadkia M, et al. Application of solvent-assisted dispersive solid phase extraction as a new, fast, simple and reliable preconcentration and trace detection of lead and cadmium ions in fruit and water samples. Food Chem. 2015;187:82–8. https://doi.org/10.1016/j.foodchem.2015.04.061.

    Article  CAS  Google Scholar 

  2. Feng W, Dong T, Li K, Wang T, Chen Z, Wang R. Characterization of binding behaviors of Cd2+ to rice proteins. Food Chem. 2019;275:186–92. https://doi.org/10.1016/j.foodchem.2018.09.123.

    Article  CAS  Google Scholar 

  3. Yao Y, Wu H, Ping J. Simultaneous determination of cd (II) and Pb (II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor. Food Chem. 2019;274:8–15.

    Article  CAS  Google Scholar 

  4. Masindi V, Muedi KL. Environmental contamination by heavy metals. In: Saleh HE-DM, Fekry Eid Sayed Aglan R, editors. Heavy Metals: IntechOpen; 2018.

  5. Pugazhendhi A, Boovaragamoorthy GM, Ranganathan K, Naushad M, Kaliannan T. New insight into effective biosorption of lead from aqueous solution using Ralstonia solanacearum: characterization and mechanism studies. J Clean Prod. 2018;174:1234–9. https://doi.org/10.1016/j.jclepro.2017.11.061.

    Article  CAS  Google Scholar 

  6. Abbas A, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol. 2016;157:141–61.

    Article  CAS  Google Scholar 

  7. Kaplan Ince O, Ince M, Yonten V, Goksu A. A food waste utilization study for removing lead(II) from drinks. Food Chem. 2017;214:637–43. https://doi.org/10.1016/j.foodchem.2016.07.117.

    Article  CAS  Google Scholar 

  8. Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008;151(2):362–7.

    Article  CAS  Google Scholar 

  9. Lee C-Y, Su C-H, Tsai P-K, Yang M-L, Ho Y-C, Lee S-S, et al. Cadmium nitrate-induced neuronal apoptosis is protected by N-acetyl-l-cysteine via reducing reactive oxygen species generation and mitochondria dysfunction. Biomed Pharmacother. 2018;108:448–56.

    Article  CAS  Google Scholar 

  10. Caini S, Bendinelli B, Masala G, Saieva C, Lundh T, Kyrtopoulos SA, et al. Predictors of erythrocyte cadmium levels in 454 adults in Florence. Italy Science of the Total Environment. 2018;644:37–44.

    Article  CAS  Google Scholar 

  11. Boskabady M, Marefati N, Farkhondeh T, Shakeri F, Farshbaf A, Boskabady MH. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ Int. 2018;120:404–20. https://doi.org/10.1016/j.envint.2018.08.013.

    Article  CAS  Google Scholar 

  12. Saghazadeh A, Ahangari N, Hendi K, Saleh F, Rezaei N. Status of essential elements in autism spectrum disorder: systematic review and meta-analysis. Rev Neurosci. 2017;28(7):783–809. https://doi.org/10.1515/revneuro-2017-0015.

    Article  CAS  Google Scholar 

  13. Abolhassani H, Honarvar NM, Mosby TT, Mahmoudi M. Nutrition, immunity, and cancers. In: Rezaei N, editor. Cancer immunology. Berlin, Heidelberg: Springer; 2015.

    Google Scholar 

  14. Esposito F, Nardone A, Fasano E, Scognamiglio G, Esposito D, Agrelli D, et al. A systematic risk characterization related to the dietary exposure of the population to potentially toxic elements through the ingestion of fruit and vegetables from a potentially contaminated area. A case study: the issue of the "land of fires" area in Campania region, Italy. Environ Pollut. 2018;243:1781–90. https://doi.org/10.1016/j.envpol.2018.09.058.

    Article  CAS  Google Scholar 

  15. Dai J, Zhang L, Du X, Zhang P, Li W, Guo X, et al. Effect of Lead on antioxidant ability and immune responses of Crucian carp. Biol Trace Elem Res. 2018:1–8.

  16. Krueger WS, Wade TJ. Elevated blood lead and cadmium levels associated with chronic infections among non-smokers in a cross-sectional analysis of NHANES data. Environ Health. 2016;15(1):16. https://doi.org/10.1186/s12940-016-0113-4.

    Article  CAS  Google Scholar 

  17. Ju H, Arumugam P, Lee J, Song JM. Impact of environmental pollutant cadmium on the establishment of a Cancer stem cell population in breast and hepatic Cancer. ACS Omega. 2017;2(2):563–72. https://doi.org/10.1021/acsomega.6b00181.

    Article  CAS  Google Scholar 

  18. Sadeghi F, Nasseri S, Mosaferi M, Nabizadeh R, Yunesian M, Mesdaghinia A. Statistical analysis of arsenic contamination in drinking water in a city of Iran and its modeling using GIS. Environ Monit Assess. 2017;189(5):230–12. https://doi.org/10.1007/s10661-017-5912-8.

    Article  CAS  Google Scholar 

  19. Pan C, Liu H-D, Gong Z, Yu X, Hou X-B, Xie D-D, et al. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site. Sci Rep. 2013;3:2333.

    Article  Google Scholar 

  20. Acharya J, Sahu JN, Mohanty CR, Meikap BC. Removal of lead(II) from wastewater by activated carbon developed from tamarind wood by zinc chloride activation. Chem Eng J. 2009;149(1):249–62. https://doi.org/10.1016/j.cej.2008.10.029.

    Article  CAS  Google Scholar 

  21. Rosen MB, Pokhrel LR, Weir MH. A discussion about public health, lead and Legionella pneumophila in drinking water supplies in the United States. Sci Total Environ. 2017;590–591:843–52. https://doi.org/10.1016/j.scitotenv.2017.02.164.

    Article  CAS  Google Scholar 

  22. El-Naggar NE-A, Hamouda RA, Mousa IE, Abdel-Hamid MS, Rabei NH. Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. Sci Rep. 2018;8(1):13456. https://doi.org/10.1038/s41598-018-31660-7.

    Article  CAS  Google Scholar 

  23. Silver MK, Li X, Liu Y, Li M, Mai X, Kaciroti N, et al. Low-level prenatal lead exposure and infant sensory function. Environ Health. 2016;15(1):65. https://doi.org/10.1186/s12940-016-0148-6.

    Article  CAS  Google Scholar 

  24. Chibowska K, Baranowska-Bosiacka I, Falkowska A, Gutowska I, Goschorska M, Chlubek D. Effect of Lead (Pb) on inflammatory processes in the brain. Int J Mol Sci. 2016;17(12):2140.

    Article  CAS  Google Scholar 

  25. Romaniuk А, Lyndin M, Sikora V, Lyndina Y, Romaniuk S, Sikora K. Heavy metals effect on breast cancer progression. J Occupat Med Toxicol. 2017;12(1):32. https://doi.org/10.1186/s12995-017-0178-1.

    Article  CAS  Google Scholar 

  26. Saghazadeh A, Rezaei N. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Progress in neuro-psychopharmacology & biological psychiatry. 2017;79(Pt B):340–68. https://doi.org/10.1016/j.pnpbp.2017.07.011.

    Article  CAS  Google Scholar 

  27. Shan Z, Wei Z, Shaikh ZA. Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in triple-negative breast cancer cells. Toxicol Appl Pharmacol. 2018;356:36–43.

    Article  CAS  Google Scholar 

  28. Richardson JB, Dancy BC, Horton CL, Lee YS, Madejczyk MS, Xu ZZ, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018;8.

  29. Waalkes MP. Cadmium carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2003;533(1–2):107–20.

    Article  CAS  Google Scholar 

  30. Buha A, Wallace D, Matovic V, Schweitzer A, Oluic B, Micic D, et al. Cadmium exposure as a putative risk factor for the development of pancreatic cancer: three different lines of evidence. Biomed Res Int. 2017;2017.

  31. Venza M, Visalli M, Biondo C, Oteri R, Agliano F, Morabito S, et al. Epigenetic marks responsible for cadmium-induced melanoma cell overgrowth. Toxicol in Vitro. 2015;29(1):242–50. https://doi.org/10.1016/j.tiv.2014.10.020.

    Article  CAS  Google Scholar 

  32. IARC. Working group on the evaluation of carcinogenic risks to humans: inorganic and organic lead compounds. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon (FR): International Agency for Research on Cancer; 2006.

    Google Scholar 

  33. Liaw F-Y, Chen W-L, Kao T-W, Chang Y-W, Huang C-F. Exploring the link between cadmium and psoriasis in a nationally representative sample. Sci Rep. 2017;7(1):1723.

    Article  CAS  Google Scholar 

  34. García-Lestón J, Roma-Torres J, Mayan O, Schroecksnadel S, Fuchs D, Moreira AO, et al. Assessment of immunotoxicity parameters in individuals occupationally exposed to lead. J Toxic Environ Health A. 2012;75(13–15):807–18.

    Article  CAS  Google Scholar 

  35. Zhang Y, Xu X, Sun D, Cao J, Zhang Y, Huo X. Alteration of the number and percentage of innate immune cells in preschool children from an e-waste recycling area. Ecotoxicol Environ Saf. 2017;145:615–22. https://doi.org/10.1016/j.ecoenv.2017.07.059.

    Article  CAS  Google Scholar 

  36. Olszowski T, Gutowska I, Baranowska-Bosiacka I, Piotrowska K, Korbecki J, Kurzawski M, et al. The effect of cadmium on COX-1 and COX-2 gene, protein expression, and enzymatic activity in THP-1 macrophages. Biol Trace Elem Res. 2015;165(2):135–44.

    Article  CAS  Google Scholar 

  37. Pathak N, Khandelwal S. Impact of cadmium in T lymphocyte subsets and cytokine expression: differential regulation by oxidative stress and apoptosis. Biometals. 2008;21(2):179–87.

    Article  CAS  Google Scholar 

  38. Yin Y, Zhang P, Yue X, Du X, Li W, Yin Y, et al. Effect of sub-chronic exposure to lead (Pb) and Bacillus subtilis on Carassius auratus gibelio: bioaccumulation, antioxidant responses and immune responses. Ecotoxicol Environ Saf. 2018;161:755–62.

    Article  CAS  Google Scholar 

  39. Zhang Q, Huang Y, Zhang K, Yan Y, Wu J, Wang F, et al. Progesterone attenuates hypertension and autoantibody levels to the angiotensin II type 1 receptor in response to elevated cadmium during pregnancy. Placenta. 2018;62:16–24.

    Article  CAS  Google Scholar 

  40. Fittipaldi S, Bimonte V, Soricelli A, Aversa A, Lenzi A, Greco E, et al. Cadmium exposure alters steroid receptors and proinflammatory cytokine levels in endothelial cells in vitro: a potential mechanism of endocrine disruptor atherogenic effect. J Endocrinol Investig. 2018:1–13.

  41. Holásková I, Elliott M, Hanson ML, Schafer R, Barnett JB. Prenatal cadmium exposure produces persistent changes to thymus and spleen cell phenotypic repertoire as well as the acquired immune response. Toxicol Appl Pharmacol. 2012;265(2):181–9.

    Article  CAS  Google Scholar 

  42. Zheng J-L, Yuan S-S, Wu C-W, Lv Z-M. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio). Aquat Toxicol. 2016;180:36–44.

    Article  CAS  Google Scholar 

  43. Almeer RS, Alarifi S, Alkahtani S, Ibrahim SR, Ali D, Moneim A. The potential hepatoprotective effect of royal jelly against cadmium chloride-induced hepatotoxicity in mice is mediated by suppression of oxidative stress and upregulation of Nrf2 expression. Biomed Pharmacother. 2018;106:1490–8.

    Article  CAS  Google Scholar 

  44. Sun M, Li YT, Liu Y, Lee SC, Wang L. Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense. Sci Rep. 2016;6:19405.

    Article  CAS  Google Scholar 

  45. Cao J, Xu X, Zhang Y, Zeng Z, Hylkema MN, Huo X. Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area. Sci Total Environ. 2018;616:988–95.

    Article  CAS  Google Scholar 

  46. Chwalba A, Maksym B, Dobrakowski M, Kasperczyk S, Pawlas N, Birkner E, et al. The effect of occupational chronic lead exposure on the complete blood count and the levels of selected hematopoietic cytokines. Toxicol Appl Pharmacol. 2018.

  47. Xiao Q, Zong Y, Malik Z, Lu S. Source identification and risk assessment of heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Hum Ecol Risk Assess: Int J. 2019:1–20. https://doi.org/10.1080/10807039.2019.1578946.

  48. Saeedi M, Li LY, Salmanzadeh M. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater. 2012;227:9–17.

    Article  CAS  Google Scholar 

  49. Dehghani S, Moore F, Keshavarzi B, Beverley AH. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicol Environ Saf. 2017;136:92–103.

    Article  CAS  Google Scholar 

  50. Wan D, Song L, Mao X, Yang J, Jin Z, Yang H. One-century sediment records of heavy metal pollution on the southeast Mongolian plateau: implications for air pollution trend in China. Chemosphere. 2019;220:539–45.

    Article  CAS  Google Scholar 

  51. Liu P, Lei Y, Ren H, Gao J, Xu H, Shen Z, et al. Seasonal variation and health risk assessment of heavy metals in PM2. 5 during winter and summer over Xi’an, China. Atmosphere. 2017;8(5):91.

    Google Scholar 

  52. Qarri F, Lazo P, Allajbeu S, Bekteshi L, Kane S, Stafilov T. The evaluation of air quality in Albania by Moss biomonitoring and metals atmospheric deposition. Arch Environ Contam Toxicol. 2019:1–18.

  53. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng. 2017;5(3):2782–99. https://doi.org/10.1016/j.jece.2017.05.029.

    Article  CAS  Google Scholar 

  54. Matouq M, Jildeh N, Qtaishat M, Hindiyeh M, Al Syouf MQ. The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. Journal of Environmental Chemical Engineering. 2015;3(2):775–84. https://doi.org/10.1016/j.jece.2015.03.027.

    Article  CAS  Google Scholar 

  55. Kobielska PA, Howarth AJ, Farha OK, Nayak S. Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev. 2018;358:92–107. https://doi.org/10.1016/j.ccr.2017.12.010.

    Article  CAS  Google Scholar 

  56. Bouabidi ZB, El-Naas MH, Cortes D, McKay G. Steel-making dust as a potential adsorbent for the removal of lead (II) from an aqueous solution. Chem Eng J. 2018;334:837–44. https://doi.org/10.1016/j.cej.2017.10.073.

    Article  CAS  Google Scholar 

  57. Koushkbaghi S, Zakialamdari A, Pishnamazi M, Ramandi HF, Aliabadi M, Irani M. Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr(VI) and Pb(II) ions from aqueous solutions in adsorption and membrane processes. Chem Eng J. 2018;337:169–82. https://doi.org/10.1016/j.cej.2017.12.075.

    Article  CAS  Google Scholar 

  58. Xu L, Xu X, Wu D. Initial dissolved oxygen-adjusted electrochemical generation of sulfate green rust for cadmium removal using a closed-atmosphere Fe–electrocoagulation system. Chem Eng J. 2019;359:1411–8. https://doi.org/10.1016/j.cej.2018.11.032.

    Article  CAS  Google Scholar 

  59. Khan MU, Malik RN, Muhammad S. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere. 2013;93(10):2230–8.

    Article  CAS  Google Scholar 

  60. Rahimi E. Lead and cadmium concentrations in goat, cow, sheep, and buffalo milks from different regions of Iran. Food Chem. 2013;136(2):389–91.

    Article  CAS  Google Scholar 

  61. Okyere H, Voegborlo RB, Agorku SE. Human exposure to mercury, lead and cadmium through consumption of canned mackerel, tuna, pilchard and sardine. Food Chem. 2015;179:331–5. https://doi.org/10.1016/j.foodchem.2015.01.038.

    Article  CAS  Google Scholar 

  62. Leibler JH, Basra K, Ireland T, McDonagh A, Ressijac C, Heiger-Bernays W, et al. Lead exposure to children from consumption of backyard chicken eggs. Environ Res. 2018;167:445–52.

    Article  CAS  Google Scholar 

  63. Lo Dico GM, Galvano F, Dugo G, D'Ascenzi C, Macaluso A, Vella A, et al. Toxic metal levels in cocoa powder and chocolate by ICP-MS method after microwave-assisted digestion. Food Chem. 2018;245:1163–8. https://doi.org/10.1016/j.foodchem.2017.11.052.

    Article  CAS  Google Scholar 

  64. Orisakwe OE, Igweze ZN, Udowelle NA. Candy consumption may add to the body burden of lead and cadmium of children in Nigeria. Environ Sci Pollut Res. 2018:1–11.

  65. Zhang P, Qin C, Hong X, Kang G, Qin M, Yang D, et al. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Sci Total Environ. 2018;633:1136–47. https://doi.org/10.1016/j.scitotenv.2018.03.228.

    Article  CAS  Google Scholar 

  66. Grioni S, Agnoli C, Krogh V, Pala V, Rinaldi S, Vinceti M, et al. Dietary cadmium and risk of breast cancer subtypes defined by hormone receptor status: a prospective cohort study. Int J Cancer. 2018.

  67. Maleki A, Zarasvand MA. Heavy metals in selected edible vegetables and estimation of their daily intake in Sanandaj, Iran. Southeast Asian J Trop Med Public Health. 2008;39(2):335–40.

    CAS  Google Scholar 

  68. Yang L, Liu G, Di L, Wu X, You W, Huang B. Occurrence, speciation, and risks of trace metals in soils of greenhouse vegetable production from the vicinity of industrial areas in the Yangtze River Delta. China Environmental Science and Pollution Research. 2019:1–13.

  69. Yang P, Zhou R, Zhang W, Yi R, Tang S, Guo L, et al. High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy. Food Chem. 2019;272:323–8. https://doi.org/10.1016/j.foodchem.2018.07.214.

    Article  CAS  Google Scholar 

  70. Huang Y, Feng F, Chen Z-G, Wu T, Wang Z-H. Green and efficient removal of cadmium from rice flour using natural deep eutectic solvents. Food Chem. 2018;244:260–5. https://doi.org/10.1016/j.foodchem.2017.10.060.

    Article  CAS  Google Scholar 

  71. Naseri M, Vazirzadeh A, Kazemi R, Zaheri F. Concentration of some heavy metals in rice types available in shiraz market and human health risk assessment. Food Chem. 2015;175:243–8.

    Article  CAS  Google Scholar 

  72. Massadeh AM, Allah A, Al-Massaedh T. Determination of heavy metals in canned fruits and vegetables sold in Jordan market. Environ Sci Pollut Res. 2018;25(2):1914–20.

    Article  CAS  Google Scholar 

  73. Hosseini SV, Sobhanardakani S, Miandare HK, Harsij M, Mac RJ. Determination of toxic (Pb, cd) and essential (Zn, Mn) metals in canned tuna fish produced in Iran. J Environ Health Sci Eng. 2015;13(1):59.

    Article  CAS  Google Scholar 

  74. Ozdemir S, Kilinc E, Oner ET. Preconcentrations and determinations of copper, nickel and lead in baby food samples employing Coprinus silvaticus immobilized multi-walled carbon nanotube as solid phase sorbent. Food Chem. 2019;276:174–9. https://doi.org/10.1016/j.foodchem.2018.07.123.

    Article  CAS  Google Scholar 

  75. Klein LD, Breakey AA, Scelza B, Valeggia C, Jasienska G, Hinde K. Concentrations of trace elements in human milk: comparisons among women in Argentina, Namibia, Poland, and the United States. PLoS One. 2017;12(8):e0183367.

    Article  CAS  Google Scholar 

  76. Samiee F, Vahidinia A, Taravati Javad M, Leili M. Exposure to heavy metals released to the environment through breastfeeding: a probabilistic risk estimation. Sci Total Environ. 2019;650:3075–83. https://doi.org/10.1016/j.scitotenv.2018.10.059.

    Article  CAS  Google Scholar 

  77. Al-Saleh I, Al-Enazi S, Shinwari N. Assessment of lead in cosmetic products. Regul Toxicol Pharmacol. 2009;54(2):105–13. https://doi.org/10.1016/j.yrtph.2009.02.005.

    Article  CAS  Google Scholar 

  78. Bassil M, Daou F, Hassan H, Yamani O, Kharma JA, Attieh Z, et al. Lead, cadmium and arsenic in human milk and their socio-demographic and lifestyle determinants in Lebanon. Chemosphere. 2018;191:911–21. https://doi.org/10.1016/j.chemosphere.2017.10.111.

    Article  CAS  Google Scholar 

  79. Xing M, Jin X, Wang J, Shi Q, Cai J, Xu S. The antagonistic effect of selenium on lead-induced immune dysfunction via recovery of cytokine and heat shock protein expression in chicken neutrophils. Biol Trace Elem Res. 2018;185(1):162–9.

    Article  CAS  Google Scholar 

  80. Kasten-Jolly J, Lawrence DA. Sex-specific effects of developmental lead exposure on the immune-neuroendocrine network. Toxicol Appl Pharmacol. 2017;334:142–57.

    Article  CAS  Google Scholar 

  81. Valentino M, Rapisarda V, Santarelli L, Bracci M, Scorcelletti M, Di Lorenzo L, et al. Effect of lead on the levels of some immunoregulatory cytokines in occupationally exposed workers. Hum Exp Toxicol. 2007;26(7):551–6.

    Article  CAS  Google Scholar 

  82. Mishra K, Chauhan U, Naik S. Effect of lead exposure on serum immunoglobulins and reactive nitrogen and oxygen intermediate. Hum Exp Toxicol. 2006;25(11):661–5.

    Article  CAS  Google Scholar 

  83. Yücesoy B, Turhan A, Üre M, Imir T, Karakaya A. Effects of occupational lead and cadmium exposure on some immunoregulatory cytokine levels in man. Toxicology. 1997;123(1–2):143–7.

    Article  Google Scholar 

  84. Metryka E, Chibowska K, Gutowska I, Falkowska A, Kupnicka P, Barczak K, et al. Lead (Pb) exposure enhances expression of factors associated with inflammation. Int J Mol Sci. 2018;19(6):1813.

    Article  CAS  Google Scholar 

  85. Olszowski T, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Pro-inflammatory properties of cadmium. Acta Biochim Pol. 2012;59(4).

  86. Alghasham A, Salem TA, Meki A-RM. Effect of cadmium-polluted water on plasma levels of tumor necrosis factor-α, interleukin-6 and oxidative status biomarkers in rats: protective effect of curcumin. Food Chem Toxicol. 2013;59:160–4.

    Article  CAS  Google Scholar 

  87. Huo J, Dong A, Niu X, Dong A, Lee S, Ma C, et al. Effects of cadmium on oxidative stress activities in plasma of freshwater turtle Chinemys reevesii. Environ Sci Pollut Res. 2018;25(8):8027–34.

    Article  CAS  Google Scholar 

  88. Ündeg̃er Ü, Başaran N, Canpmar H, Kansu E. Immune alterations in lead-exposed workers. Toxicology. 1996;109(2):167–72. https://doi.org/10.1016/0300-483X(96)03333-1.

    Article  Google Scholar 

  89. Huo X, Dai Y, Yang T, Zhang Y, Li M, Xu X. Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. Sci Total Environ. 2019;664:690–7. https://doi.org/10.1016/j.scitotenv.2019.02.040.

    Article  CAS  Google Scholar 

  90. Pillet S, Rooney AA, Bouquegneau J-M, Cyr DG, Fournier M. Sex-specific effects of neonatal exposures to low levels of cadmium through maternal milk on development and immune functions of juvenile and adult rats. Toxicology. 2005;209(3):289–301.

    Article  CAS  Google Scholar 

  91. Nygaard UC, Li Z, Palys T, Jackson B, Subbiah M, Malipatlolla M, et al. Cord blood T cell subpopulations and associations with maternal cadmium and arsenic exposures. PLoS One. 2017;12(6):e0179606.

    Article  CAS  Google Scholar 

  92. Hanson ML, Holásková I, Elliott M, Brundage KM, Schafer R, Barnett JB. Prenatal cadmium exposure alters postnatal immune cell development and function. Toxicol Appl Pharmacol. 2012;261(2):196–203.

    Article  CAS  Google Scholar 

  93. Li S, Wang J, Zhang B, Liu Y, Lu T, Shi Y, et al. Urinary lead concentration is an independent predictor of cancer mortality in the US general population. Front Oncol. 2018;8:242.

    Article  Google Scholar 

  94. McElroy JA, Shafer MM, Gangnon RE, Crouch LA, Newcomb PA. Urinary lead exposure and breast cancer risk in a population-based case-control study. Cancer Epidemiol Prev Biomark. 2008;17(9):2311–7.

    Article  CAS  Google Scholar 

  95. Chen C, Xun P, Nishijo M, Sekikawa A, He K. Cadmium exposure and risk of pancreatic cancer: a meta-analysis of prospective cohort studies and case–control studies among individuals without occupational exposure history. Environ Sci Pollut Res. 2015;22(22):17465–74.

    Article  CAS  Google Scholar 

  96. Djordjevic VR, Wallace DR, Schweitzer A, Boricic N, Knezevic D, Matic S, et al. Environmental cadmium exposure and pancreatic cancer: evidence from case control, animal and in vitro studies. Environ Int. 2019;128:353–61.

    Article  CAS  Google Scholar 

  97. Kun Song J, Luo H, Hai Yin X, Lei Huang G, Yang Luo S, Yuan DB, et al. Association between cadmium exposure and renal cancer risk: a meta-analysis of observational studies. Sci Rep. 2015;5:17976.

    Article  CAS  Google Scholar 

  98. Wu H, Liao Q, Chillrud SN, Yang Q, Huang L, Bi J, et al. Environmental exposure to cadmium: health risk assessment and its associations with hypertension and impaired kidney function. Sci Rep. 2016;6:29989.

    Article  CAS  Google Scholar 

  99. Jouybari L, Naz MSG, Sanagoo A, Kiani F, Sayehmiri F, Sayehmiri K, et al. Toxic elements as biomarkers for breast cancer: a meta-analysis study. Cancer Manag Res. 2018;10:69.

    Article  CAS  Google Scholar 

  100. Cho YA, Kim J, Woo HD, Kang M. Dietary cadmium intake and the risk of cancer: a meta-analysis. PLoS One. 2013;8(9):e75087.

    Article  CAS  Google Scholar 

  101. White AJ, O’brien KM, Niehoff NM, Carroll R, Sandler DP. Metallic air pollutants and breast Cancer risk in a Nationwide cohort study. Epidemiology. 2019;30(1):20–8.

    Article  Google Scholar 

  102. Wu X, Zhu X, Xie M. Association between dietary cadmium exposure and breast cancer risk: an updated meta-analysis of observational studies. Medical science monitor: international medical journal of experimental and clinical research. 2015;21:769.

    Article  Google Scholar 

  103. Van Maele-Fabry G, Lombaert N, Lison D. Dietary exposure to cadmium and risk of breast cancer in postmenopausal women: a systematic review and meta-analysis. Environ Int. 2016;86:1–13.

    Article  CAS  Google Scholar 

  104. Adams SV, Shafer MM, Bonner MR, LaCroix AZ, Manson JE, Meliker JR, et al. Urinary cadmium and risk of invasive breast cancer in the women's health initiative. Am J Epidemiol. 2016;183(9):815–23.

    Article  Google Scholar 

  105. Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Cadmium—a metallohormone? Toxicol Appl Pharmacol. 2009;238(3):266–71.

    Article  CAS  Google Scholar 

  106. Sawada N, Iwasaki M, Inoue M, Takachi R, Sasazuki S, Yamaji T, et al. Long-term dietary cadmium intake and cancer incidence. Epidemiology. 2012:368–76.

  107. Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G, et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med. 2003;9(8):1081–4.

    Article  CAS  Google Scholar 

  108. Martin MB, Voeller HJ, Gelmann EP, Lu J, Stoica E-G, Hebert EJ, et al. Role of cadmium in the regulation of AR gene expression and activity. Endocrinology. 2002;143(1):263–75.

    Article  CAS  Google Scholar 

  109. Joseph P. Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol. 2009;238(3):272–9.

    Article  CAS  Google Scholar 

  110. Luevano J, Damodaran C. A review of molecular events of cadmium-induced carcinogenesis. J Environ Pathol Toxicol Oncol. 2014;33(3).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, M., Khalili, N., Razi, S. et al. Effects of lead and cadmium on the immune system and cancer progression. J Environ Health Sci Engineer 18, 335–343 (2020). https://doi.org/10.1007/s40201-020-00455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00455-2

Keywords

Navigation