Skip to main content
Log in

Pharmacotherapy of Obesity: Limits and Perspectives

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Obesity is a severe worldwide epidemic. Obesity comorbidities, such as type 2 diabetes mellitus, hypertension, and atherosclerosis, are costly for patients and governments. The treatment of obesity involves several facets, including lifestyle changes, bariatric surgery, and pharmacotherapy. As changes in lifestyle require considerable patient commitment that is sometimes unachievable, and surgery is expensive and invasive, pharmacotherapy is the primary option for most patients. This review describes the pharmacotherapy currently available in the USA, Europe, and Brazil, focusing on its limitations. We then analyze the results from clinical trials of new drug candidates. Most drugs cause weight loss of < 4 kg compared with controls, and severe adverse effects have caused a number of drugs to be withdrawn from the market in several countries. Drugs under development have not shown more significant weight loss or reduced adverse effects. We conclude that a significant portion of obese patients have few treatment options because of the adverse effects and minimal weight loss associated with current pharmacotherapy. However, drugs currently under development appear unable to change this scenario in the near future. Thus, it is essential that new compounds are developed and new molecular targets studied so obesity can be efficiently treated in all patients in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bray GA, Frühbeck G, Ryan DH, Wilding JPH. Management of obesity. Lancet. 2016;387:1947–56.

    Article  PubMed  Google Scholar 

  2. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacogenomics. 2015;33:673–89.

    Google Scholar 

  4. Rtveladze K, Marsh T, Webber L, Kilpi F, Levy D, Conde W, et al. Health and economic burden of obesity in Brazil. PLoS One. 2013;8:e68785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mertens IL, Van Gaal LF. Overweight, obesity, and blood pressure: the effects of modest weight reduction. Obes Res. 2000;8:270–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ditschuneit HH, Frier HI, Flechtner-Mors M. Lipoprotein responses to weight loss and weight maintenance in high-risk obese subjects. Eur J Clin Nutr. 2002;56:264–70.

    Article  CAS  PubMed  Google Scholar 

  7. Umashanker D, Igel LI, Kumar RB, Aronne LJ. Current and future medical treatment of obesity. Gastrointest Endosc Clin N Am. 2017;27:181–90.

    Article  PubMed  Google Scholar 

  8. Andermann ML, Lowell BB. Toward a wiring diagram understanding of appetite control. Neuron. 2017;95:757–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. MacLean PS, Blundell JE, Mennella JA, Batterham RL. Biological control of appetite: a daunting complexity. Obesity (Silver Spring). 2017;25:S8–16.

    Article  Google Scholar 

  10. Hopkins M, Blundell JE. Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity. Clin Sci. 2016;130:1615–28.

    Article  CAS  PubMed  Google Scholar 

  11. Heisler LK, Lam DD. An appetite for life: brain regulation of hunger and satiety. Curr Opin Pharmacol. 2017;37:100–6.

    Article  CAS  PubMed  Google Scholar 

  12. Bianchini JA, Hintze LJ, Bevilaqua C, Agnolo CMD, Nardo N. Tratamento da Obesidade: revisão de artigos sobre intervenções multiprofissionais no contexto brasileiro. Arq Ciê Saúde. 2012;19:9–15.

    Google Scholar 

  13. Alamuddin N, Bakizada Z, Wadden TA. Management of obesity. J Clin Oncol. 2016;34:4295–305.

    Article  PubMed  Google Scholar 

  14. Cadegiani FA, Diniz GC, Alves G. Aggressive clinical approach to obesity improves metabolic and clinical outcomes and can prevent bariatric surgery: a single center experience. BMC Obes. 2017;4:9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rodgers RJ. Bench to bedside in appetite research: lost in translation? Neurosci Biobehav Rev. 2017;76:163–73.

    Article  CAS  PubMed  Google Scholar 

  16. Negreiros IIF, Oliveira DC, Figueredo MRO, Ferraz DLM, Souza LS, Moreira J, et al. Side effects and contraindications of anti-obesity drugs: a systematic review. Nutrire. 2011;36:137–60.

    Google Scholar 

  17. Lucchetta RC, Riveros BS, Pontarolo R, Radominski RB, Otuki MF, Fernandez-Limos F, et al. Diethylpropion and mazindol: an end to the discussion? Rev Assoc Med Bras. 2017;63:203–6.

    Article  PubMed  Google Scholar 

  18. Lucchetta RC, Riveros BS, Pontarolo R, Radominski RB, Otuki MF, Fernandez-Limos F, et al. Systematic review and meta-analysis of the efficacy and safety of amfepramone and mazindol as a monotherapy for the treatment of obese or overweight patients. Clin (São Paulo). 2017;72:317–24.

    Article  Google Scholar 

  19. Suplicy H, Boguszewski CL, dos Santos CM, do Desterro de Figueiredo M, Cunha DR, Radominski R. A comparative study of five centrally acting drugs on the pharmacological treatment of obesity. Int J Obes. 2014;38:1097–103.

    Article  CAS  Google Scholar 

  20. Martins MC, Souza Filho MD, Moura FS, Carvalho JS, Müller MC, Neves RV, et al. Use of anti-obesity drugs among college students. Rev Assoc Med Bras. 2011;57:570–6.

    Article  Google Scholar 

  21. Bray GA, Greenway FL. Pharmacological treatment of the overweight patient. Pharmacol Rev. 2007;59:151–84.

    Article  CAS  PubMed  Google Scholar 

  22. Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res. 2015;277:14–31.

    Article  CAS  PubMed  Google Scholar 

  23. Siebenhofer A, Jeitler K, Horvath K, Berghold A, Posch N, Meschik J, et al. Long-term effects of weight-reducing drugs in people with hypertension. Cochrane Database Syst Rev. 2016;3:CD007654.

    PubMed  Google Scholar 

  24. Padwal R, Li SK, Lau DC. Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int J Obes Relat Metab Disord. 2003;27:1437–46.

    Article  CAS  PubMed  Google Scholar 

  25. Padwal RS, Li SK, Lau DC. Long-term pharmacotherapy for obesity and overweight. Cochrane Database Syst Rev. 2004;3:CD004094.

    Google Scholar 

  26. Zhou YH, Ma XQ, Wu C, Lu J, Zhang SS, Guo J, et al. Effect of anti-obesity drug on cardiovascular risk factors: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2012;7:e39062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaukua JK, Pekkarinen TA, Rissanen AM. Health-related quality of life in a randomised placebo-controlled trial of sibutramine in obese patients with type II diabetes. Int J Obes Relat Metab Disord. 2004;28:600–5.

    Article  CAS  PubMed  Google Scholar 

  28. McMahon FG, Weinstein SP, Rowe E, Ernst KR, Johnson F, Fujioka K, et al. Sibutramine is safe and effective for weight loss in obese patients whose hypertension is well controlled with angiotensin-converting enzyme inhibitors. J Hum Hypertens. 2002;16:5–11.

    Article  CAS  PubMed  Google Scholar 

  29. James WP, Caterson ID, Coutinho W, Finer N, Van Gaal LF, Maggioni AP, et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med. 2010;363:905–17.

    Article  CAS  PubMed  Google Scholar 

  30. Araldi RP, Santos NP, Mendes TB, Carvalho LB, Ito ET, de-Sá-Júnior PL, et al. Can spirulina maxima reduce the mutagenic potential of sibutramine? Genet Mol Res. 2015;14:18452–64.

    Article  CAS  PubMed  Google Scholar 

  31. Heo SH, Kang MH. A case of dilated cardiomyopathy with massive left ventricular thrombus after use of a sibutramine-containing slimming product. Korean Circ J. 2013;43:632–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ballinger A, Peikin SR. Orlistat: its current status as an anti-obesity drug. Eur J Pharmacol. 2002;440:109–17.

    Article  CAS  PubMed  Google Scholar 

  33. Torgerson JS, Hauptman J, Boldrin MN, Sjöström L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27:155–61.

    Article  CAS  PubMed  Google Scholar 

  34. Horvath K, Jeitler K, Siering U, Stich AK, Skipka G, Gratzer TW, et al. Long-term effects of weight-reducing interventions in hypertensive patients: systematic review and meta-analysis. Arch Intern Med. 2008;168:571–80.

    Article  CAS  PubMed  Google Scholar 

  35. Rucker D, Padwal R, Li SK, Curioni C, Lau DC. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ Clin Res. 2007;335:1194–9.

    Article  CAS  Google Scholar 

  36. Hutton B, Fergusson D. Changes in body weight and serum lipid profile in obese patients treated with orlistat in addition to a hypocaloric diet: a systematic review of randomized clinical trials. Am J Clin Nutr. 2004;80:1461–8.

    Article  CAS  PubMed  Google Scholar 

  37. Perrio MJ, Wilton LV, Shakir SA. The safety profiles of orlistat and sibutramine: results of prescription-event monitoring studies in England. Obesity. 2007;15:2712–22.

    Article  PubMed  Google Scholar 

  38. O’Meara S, Riemsma R, Shirran L, Mather L, ter Riet G. A systematic review of the clinical effectiveness of orlistat used for the management of obesity. Obes Rev. 2004;5:51–68.

    Article  PubMed  Google Scholar 

  39. MacWalter RS, Fraser HW, Armstrong KM. Orlistat enhances warfarin effect. Ann Pharmacother. 2003;37:510–2.

    Article  PubMed  Google Scholar 

  40. Palacios-Martinez D, Garcia-Alvarez JC, Montero-Santamaria N, Villar-Ruiz OP, Ruiz-Garcia A, Diaz-Alonso RA. Macrocytic anemia and thrombocytopenia induced by orlistat. Int J Endocrinol Metab. 2013;11:e6721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deb KS, Gupta R, Varshney M. Orlistat abuse in a case of bulimia nervosa: the changing Indian society. Gen Hosp Psychiatry. 2014;36:e3–4.

    Article  Google Scholar 

  42. Thomsen WJ, Grottick AJ, Menzaghi F, Reyes-saldana H, Espitia S, Yuskin D, et al. Lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist: in vitro and in vivo pharmacological characterization. J Pharmacol Exp Ther. 2008;325:577–87.

    Article  CAS  PubMed  Google Scholar 

  43. Lam DD, Przydzial MJ, Ridley SH, Yeo GS, Rochford JJ, O’Rahilly S, et al. Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology. 2008;149:1323–8.

    Article  CAS  PubMed  Google Scholar 

  44. Kroeze WK, Kristiansen K, Roth BL. Molecular biology of serotonin receptors structure and function at the molecular level. Curr Top Med Chem. 2002;2:507–28.

    Article  CAS  PubMed  Google Scholar 

  45. Nichols DE. Hallucinogens. Pharmacol Ther. 2004;101:131–81.

    Article  CAS  PubMed  Google Scholar 

  46. Rothman RB, Baumann MH. Appetite suppressants, cardiac valve disease and combination pharmacotherapy. Am J Ther. 2009;16:354–64.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chan EW, He Y, Chui CS, Wong AY, Lau WC, Wong IC. Efficacy and safety of lorcaserin in obese adults: a meta-analysis of 1-year randomized controlled trials (RCTs) and narrative review on short-term RCTs. Obes Rev. 2013;14:383–92.

    Article  CAS  PubMed  Google Scholar 

  48. O’Neil PMM, Smith SRR, Weissman NJJ, Fidler MCC, Sanchez M, Zhang J, et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity. 2012;20:1426–36.

    Article  CAS  PubMed  Google Scholar 

  49. Nesto R, Fain R, Li Y, Shanahan W. Evaluation of lorcaserin on progression of prediabetes to type 2 diabetes and reversion to euglycemia. Postgrad Med. 2016;128:364–70.

    Article  PubMed  Google Scholar 

  50. Smith SR, Weissman NJ, Anderson CM, Sanchez M, Chuang E, Stubbe S, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363:245–56.

    Article  CAS  PubMed  Google Scholar 

  51. Fidler MC, Sanchez M, Raether B, Weissman NJ, Smith SR, Shanahan WR, et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J Clin Endocrinol Metab. 2011;96:3067–77.

    Article  CAS  PubMed  Google Scholar 

  52. Igel LI, Kumar RB, Saunders KH, Aronne LJ. Practical use of pharmacotherapy for obesity. Gastroenterology. 2017;152:1765–79.

    Article  PubMed  Google Scholar 

  53. Bai B, Wang Y. The use of lorcaserin in the management of obesity: a critical appraisal. Drug Des Dev Ther. 2010;5:1–7.

    Google Scholar 

  54. Halpern B, Mancini MC. Safety assessment of combination therapies in the treatment of obesity: focus on naltrexone/bupropion extended release and phentermine–topiramate extended release. Expert Opin Drug Saf. 2017;16:27–39.

    Article  CAS  PubMed  Google Scholar 

  55. Narayanaswami V, Dwoskin LP. Obesity: current and potential pharmacotherapeutics and targets. Pharmacol Ther. 2017;170:116–47.

    Article  CAS  PubMed  Google Scholar 

  56. Acosta A, Camilleri M, Shin A, Vazquez-Roque MI, Iturrino J, Burton D, et al. Quantitative gastrointestinal and psychological traits associated with obesity and response to weight-loss therapy. Gastroenterology. 2015;148:537–46.

    Article  PubMed  Google Scholar 

  57. Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwiers ML, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377:1341–52.

    Article  CAS  PubMed  Google Scholar 

  58. Garvey WT, Ryan DH, Henry R, Bohannon NJ, Toplak H, Schwiers M, et al. Prevention of type 2 diabetes in subjects with prediabetes and metabolic syndrome treated with phentermine and topiramate extended release. Diabetes Care. 2014;37:912–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Winslow DH, Bowden CH, DiDonato KP, McCullough PA. A randomized, double-blind, placebo-controlled study of an oral, extended-release formulation of phentermine/topiramate for the treatment of obstructive sleep apnea in obese adults. Sleep. 2012;35:1529–39.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Garvey WT, Ryan DH, Look M, Gadde KM, Allison DB, Peterson CA, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012;95:297–308.

    Article  CAS  PubMed  Google Scholar 

  61. Allison DB, Gadde KM, Garvey WT, Peterson CA, Schwiers ML, Najarian T, et al. Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP). Obesity. 2012;20:330–42.

    Article  CAS  PubMed  Google Scholar 

  62. Garvey WT, Ryan DH, Bohannon NJ, Kushner RF, Rueger M, Dvorak RV, et al. Weight-loss therapy in type 2 diabetes: effects of phentermine and topiramate extended release. Diabetes Care. 2014;37:3309–16.

    Article  CAS  PubMed  Google Scholar 

  63. Fujioka K. Current and emerging medications for overweight or obesity in people with comorbidities. Diabetes Obes Metab. 2015;17:1021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bhat SP, Sharma A. Current drug targets in obesity pharmacotherapy—a review. Curr Drug Targets. 2017;18:983–93.

    Article  CAS  PubMed  Google Scholar 

  65. Knudsen LB, Nielsen PF, Huusfeldt PO, Johansen NL, Madsen K, Pedersen FZ, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem. 2000;43:1664–9.

    Article  CAS  PubMed  Google Scholar 

  66. Russell-Jones D. Molecular, pharmacological and clinical aspects of liraglutide, a once-daily human GLP-1 analogue. Mol Cell Endocrinol. 2009;297:137–40.

    Article  CAS  PubMed  Google Scholar 

  67. Niswender K, Pi-Sunyer X, Buse J, Jensen KH, Toft AD, Russell-Jones D, et al. Weight change with liraglutide and comparator therapies: an analysis of seven phase 3 trials from the liraglutide diabetes development programme. Diabetes Obes Metab. 2013;15:42–54.

    Article  CAS  PubMed  Google Scholar 

  68. Mancini MC, de Melo ME. The burden of obesity in the current world and the new treatments available: focus on liraglutide 3.0 mg. Diabetol Metab Syndr. 2017;9:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang F, Tong Y, Su N, Li Y, Tang L, Huang L, et al. Weight loss effect of glucagon-like peptide-1 mimetics on obese/overweight adults without diabetes: a systematic review and meta-analysis of randomized controlled trials. J Diabetes. 2015;7:329–39.

    Article  CAS  PubMed  Google Scholar 

  70. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373:11–22.

    Article  CAS  PubMed  Google Scholar 

  71. Greenway FL, Whitehouse MJ, Guttadauria M, Anderson JW, Atkinson RL, Fujioka K, et al. Rational design of a combination medication for the treatment of obesity. Obesity. 2009;17:30–9.

    Article  CAS  PubMed  Google Scholar 

  72. Billes SK, Sinnayah P, Cowley MA. Naltrexone/bupropion for obesity: an investigational combination pharmacotherapy for weight loss. Pharmacol Res. 2014;84:1–11.

    Article  CAS  PubMed  Google Scholar 

  73. Halseth A, Shan K, Walsh B, Gilder K, Fujioka K. Method-of-use study of naltrexone sustained release (SR)/bupropion SR on body weight in individuals with obesity. Obesity. 2017;25:338–45.

    Article  CAS  PubMed  Google Scholar 

  74. Wadden TA, Foreyt JP, Foster GD, Hill JO, Klein S, O’Neil PM, et al. Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial. Obesity. 2011;19:110–20.

    Article  CAS  PubMed  Google Scholar 

  75. Hollander P, Gupta AK, Plodkowski R, Greenway F, Bays H, Burns C, et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36:4022–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Apovian CM, Aronne L, Rubino D, Still C, Wyatt H, Burns C, et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity. 2013;21:935–43.

    Article  CAS  PubMed  Google Scholar 

  77. Hong K, Herrmann K, Dybala C, Halseth AE, Lam H, Foreyt JP. Naltrexone/Bupropion extended release-induced weight loss is independent of nausea in subjects without diabetes. Clin Obes. 2016;6:305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Greenway FL, Fujioka K, Plodkowski RA, Mudaliar S, Guttadauria M, Erickson J, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376:595–605.

    Article  CAS  PubMed  Google Scholar 

  79. Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech. 2017;10:679–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Axel AM, Mikkelsen JD, Hansen HH. Tesofensine, a novel triple monoamine reuptake inhibitor, induces appetite suppression by indirect stimulation of alpha1 adrenoceptor and dopamine D1 receptor pathways in the diet-induced obese rat. Neuropsychopharmacology. 2010;35:1464–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hansen HH, Hansen G, Tang-Christensen M, Larsen PJ, Axel AM, Raben A, et al. The novel triple monoamine reuptake inhibitor tesofensine induces sustained weight loss and improves glycemic control in the diet-induced obese rat: comparison to sibutramine and rimonabant. Eur J Pharmacol. 2010;636:88–95.

    Article  CAS  PubMed  Google Scholar 

  82. Hansen HH, Jensen MM, Overgaard A, Weikop P, Mikkelsen JD. Tesofensine induces appetite suppression and weight loss with reversal of low forebrain dopamine levels in the diet-induced obese rat. Pharmacol Biochem Behav. 2013;110:265–71.

    Article  CAS  PubMed  Google Scholar 

  83. van de Giessen E, de Bruin K, la Fleur SE, van den Brink W, Booij J. Triple monoamine inhibitor tesofensine decreases food intake, body weight, and striatal dopamine D2/D3 receptor availability in diet-induced obese rats. Eur Neuropsychopharmacol. 2012;22:290–9.

    Article  CAS  PubMed  Google Scholar 

  84. Hauser RA, Salin L, Juhel N, Konyago VL. Randomized trial of the triple monoamine reuptake inhibitor NS 2330 (tesofensine) in early Parkinson’s disease. Mov Disord. 2007;22:359–65.

    Article  PubMed  Google Scholar 

  85. Astrup A, Madsbad S, Breum L, Jensen TJ, Kroustrup JP, Larsen TM. Effect of tesofensine on bodyweight loss, body composition, and quality of life in obese patients: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1906–13.

    Article  CAS  PubMed  Google Scholar 

  86. Sjödin A, Gasteyger C, Nielsen AL, Raben A, Mikkelsen JD, Jensen JK, et al. The effect of the triple monoamine reuptake inhibitor tesofensine on energy metabolism and appetite in overweight and moderately obese men. Int J Obes. 2010;34:1634–43.

    Article  CAS  Google Scholar 

  87. Astrup A, Meier DH, Mikkelsen BO, Villumsen JS, Larsen TM. Weight loss produced by tesofensine in patients with Parkinson’s or Alzheimer’s disease. Obesity. 2008;16:1363–9.

    Article  CAS  PubMed  Google Scholar 

  88. Rascol O, Poewe W, Lees A, Aristin M, Salin L, Juhel N, et al. Tesofensine (NS 2330), a monoamine reuptake inhibitor, in patients with advanced Parkinson disease and motor fluctuations: the ADVANS study. Arch Neurol. 2008;65:577–83.

    Article  PubMed  Google Scholar 

  89. Bentzen BH, Grunnet M, Hyveled-Nielsen L, Sundgreen C, Lassen JB, Hansen HH. Anti-hypertensive treatment preserves appetite suppression while preventing cardiovascular adverse effects of tesofensine in rats. Obesity. 2013;21:985–92.

    Article  CAS  PubMed  Google Scholar 

  90. Schoedel KA, Meier D, Chakraborty B, Manniche PM, Sellers EM. Subjective and objective effects of the novel triple reuptake inhibitor tesofensine in recreational stimulant users. Clin Pharmacol Ther. 2010;88:69–78.

    Article  CAS  PubMed  Google Scholar 

  91. Rabiner EA, Beaver J, Makwana A, Searle G, Long C, Nathan PJ, et al. Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans. Mol Psychiatry. 2011;16:826–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ignar DM, Goetz AS, Noble KN, Carballo LH, Stroup AE, Fisher JC, et al. Regulation of ingestive behaviors in the rat by GSK1521498, a novel micro-opioid receptor-selective inverse agonist. J Pharmacol Exp Ther. 2011;339:24–34.

    Article  CAS  PubMed  Google Scholar 

  93. Giuliano C, Robbins TW, Nathan PJ, Bullmore ET, Everitt BJ. Inhibition of opioid transmission at the μ-opioid receptor prevents both food seeking and binge-like eating. Neuropsychopharmacology. 2012;37:2643–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nathan PJ, O’Neill BV, Bush MA, Koch A, Tao WX, Maltby K, et al. Opioid receptor modulation of hedonic taste preference and food intake: a single-dose safety, pharmacokinetic, and pharmacodynamic investigation with GSK1521498, a novel μ-opioid receptor inverse agonist. J Clin Pharmacol. 2012;52:464–74.

    Article  CAS  PubMed  Google Scholar 

  95. Nathan PJ, Bush MA, Tao WX, Koch A, Davies KM, Maltby K, et al. Multiple-dose safety, pharmacokinetics, and pharmacodynamics of the μ-opioid receptor inverse agonist GSK1521498. J Clin Pharmacol. 2012;52:1456–67.

    Article  CAS  PubMed  Google Scholar 

  96. Ziauddeen H, Chamberlain SR, Nathan PJ, Koch A, Maltby K, Bush M, et al. Effects of the mu-opioid receptor antagonist GSK1521498 on hedonic and consummatory eating behaviour: a proof of mechanism study in binge-eating obese subjects. Mol Psychiatry. 2013;18:1287–93.

    Article  CAS  PubMed  Google Scholar 

  97. Chamberlain SR, Mogg K, Bradley BP, Koch A, Dodds CM, Tao WX, et al. Effects of mu opioid receptor antagonism on cognition in obese binge-eating individuals. Psychopharmacology. 2012;224:501–9.

    Article  CAS  PubMed  Google Scholar 

  98. Cambridge VC, Ziauddeen H, Nathan PJ, Subramaniam N, Dodds C, Chamberlain SR, et al. Neural and behavioral effects of a novel mu opioid receptor antagonist in binge-eating obese people. Biol Psychiatry. 2013;73:887–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pradhan G, Samson SL, Sun Y. Ghrelin: much more than a hunger hormone. Curr Opin Clin Nutr Metab Care. 2013;16:619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Delhanty PJ, Neggers SJ, van der Lely AJ. Des-acyl ghrelin: a metabolically active peptide. Endocr Dev. 2013;25:112–21.

    Article  CAS  PubMed  Google Scholar 

  101. Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Mechanisms of obesity in Prader–Willi syndrome. Pediatr Obes. 2018;13:3–13.

    Article  CAS  PubMed  Google Scholar 

  102. Delhanty PJ, Huisman M, Baldeon-Rojas LY, van den Berge I, Grefhorst A, Abribat T, et al. Des-acyl ghrelin analogs prevent high-fat-diet-induced dysregulation of glucose homeostasis. FASEB J. 2013;27:1690–700.

    Article  CAS  PubMed  Google Scholar 

  103. Allas S, Delale T, Ngo N, Julien M, Sahakian P, Ritter J, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of AZP-531, a first-in-class analogue of unacylated ghrelin, in healthy and overweight/obese subjects and subjects with type 2 diabetes. Diabetes Obes Metab. 2016;18:868–74.

    Article  CAS  PubMed  Google Scholar 

  104. Allas S, Caixàs A, Poitou C, Coupaye M, Thuilleaux D, Lorenzini F, et al. AZP-531, an unacylated ghrelin analog, improves food-related behavior in patients with Prader–Willi syndrome: a randomized placebo-controlled trial. PLoS One. 2018;13:e0190849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stewart JE, Feinle-Bisset C, Keast RS. Fatty acid detection during food consumption and digestion: associations with ingestive behavior and obesity. Prog Lipid Res. 2011;50:225–33.

    Article  CAS  PubMed  Google Scholar 

  106. Yamada Y, Kato T, Ogino H, Ashina S, Kato K. Cetilistat (ATL-962), a novel pancreatic lipase inhibitor, ameliorates body weight gain and improves lipid profiles in rats. Horm Metab Res. 2008;40:539–43.

    Article  CAS  PubMed  Google Scholar 

  107. Kopelman P, Bryson A, Hickling R, Rissanen A, Rossner S, Toubro S, et al. Cetilistat (ATL-962), a novel lipase inhibitor: a 12-week randomized, placebo-controlled study of weight reduction in obese patients. Int J Obes. 2007;31:494–9.

    Article  CAS  Google Scholar 

  108. Kopelman P, Groot GH, Rissanen A, Rossner S, Toubro S, Palmer R, et al. Weight loss, HbA1c reduction, and tolerability of cetilistat in a randomized, placebo-controlled phase 2 trial in obese diabetics: comparison with orlistat (Xenical). Obesity. 2010;18:108–15.

    Article  CAS  PubMed  Google Scholar 

  109. Bryson A, de la Motte S, Dunk C. Reduction of dietary fat absorption by the novel gastrointestinal lipase inhibitor cetilistat in healthy volunteers. Br J Clin Pharmacol. 2009;67:309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Johansson M, Fransson D, Rundlöf T, Huynh NH, Arvidsson T. A general analytical platform and strategy in search for illegal drugs. J Pharm Biomed Anal. 2014;100:215–29.

    Article  CAS  PubMed  Google Scholar 

  111. Duan Y, Li F, Tan B, Yao K, Yin Y. Metabolic control of myofibers: promising therapeutic target for obesity and type 2 diabetes. Obes Res. 2017;18:647–59.

    Article  Google Scholar 

  112. Poekes L, Lanthier N, Leclercq IA. Brown adipose tissue: a potential target in the fight against obesity and the metabolic syndrome. Clin Sci. 2015;129:933–49.

    Article  CAS  PubMed  Google Scholar 

  113. Cao Y. Angiogenesis as a therapeutic target for obesity and metabolic diseases. Chem Immunol Allergy. 2014;99:170–9.

    Article  CAS  PubMed  Google Scholar 

  114. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004;10:625–32.

    Article  CAS  PubMed  Google Scholar 

  115. Kim DH, Woods SC, Seeley RJ. Peptide designed to elicit apoptosis in adipose tissue endothelium reduces food intake and body weight. Diabetes. 2010;59:907–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim DH, Sartor MA, Bain JR, Sandoval D, Stevens RD, Medvedovic M, et al. Rapid and weight-independent improvement of glucose tolerance induced by a peptide designed to elicit apoptosis in adipose tissue endothelium. Diabetes. 2012;61:2299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barnhart KF, Christianson DR, Hanley PW, Driessen WH, Bernacky BJ, Baze WB, et al. A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys. Sci Transl Med. 2011;3:108ra112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hossen N, Kajimoto K, Akita H, Hyodo M, Harashima H. A comparative study between nanoparticle-targeted therapeutics and bioconjugates as obesity medication. J Control Release. 2013;171:104–12.

    Article  CAS  PubMed  Google Scholar 

  119. Devenny JJ, Godonis HE, Harvey SJ, Rooney S, Cullen MJ, Pelleymounter MA. Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats. Obesity. 2012;20:1645–52.

    Article  CAS  PubMed  Google Scholar 

  120. Chiba Y, Yamada T, Tsukita S, Takahashi K, Munakata Y, Shirai Y, et al. Dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, acutely reduces energy expenditure in BAT via neural signals in mice. PLoS One. 2016;11:e0150756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang D, Luo Y, Wang X, Orlicky DJ, Myakala K, Yang P, et al. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents renal and liver disease in western diet induced obesity mice. Int J Mol Sci. 2018;19:E137.

    Article  CAS  PubMed  Google Scholar 

  122. Terami N, Ogawa D, Tachibana H, Hatanaka T, Wada J, Nakatsuka A, et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 2014;9:e100777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang M, Zhang L, Wu B, Song H, An Z, Li S. Dapagliflozin treatment for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2014;30:204–21.

    Article  CAS  PubMed  Google Scholar 

  124. Johnston R, Uthman O, Cummins E, Clar C, Royle P, Colquitt J, et al. Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: systematic review and economic evaluation. Health Technol Assess (Rockv). 2017;21:1–218.

    Article  Google Scholar 

  125. Zhang S, Manne S, Lin J, Yang J. Characteristics of patients potentially eligible for pharmacotherapy for weight loss in primary care practice in the United States. Obes Sci Pract. 2016;2:104–14.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sharma S, Wharton S, Forhan M, Kuk JL. Influence of weight discrimination on weight loss goals and self-selected weight loss interventions. Clin Obes. 2011;1:153–60.

    Article  CAS  PubMed  Google Scholar 

  127. Liou TH, Huang N, Wu CH, Chou YJ, Liou YM, Chou P. Weight loss behavior in obese patients before seeking professional treatment in Taiwan. Obes Res Clin Pract. 2009;3:1–52.

    Article  PubMed  Google Scholar 

  128. Tremblay A, Bellisle F. Nutrients, satiety, and control of energy intake. Appl Physiol Nutr Metab. 2015;40:971–9.

    Article  PubMed  Google Scholar 

  129. Kasichayanula S, Chang M, Hasegawa M, Liu X, Yamahira N, LaCreta FP, et al. Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13:357–65.

    Article  CAS  PubMed  Google Scholar 

  130. Lundkvist P, Pereira MJ, Katsogiannos P, Sjöström CD, Johnsson E, Eriksson JW. Dapagliflozin once daily plus exenatide once weekly in obese adults without diabetes: sustained reductions in body weight, glycaemia and blood pressure over 1 year. Diabetes Obes Metab. 2017;19:1276–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Professors Guacira C. Matos and Guilherme C. Montes for their comments at the beginning of the research for this review and Professor Luciano A. M. Grillo for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Majerowicz.

Ethics declarations

Funding

This study was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Conflicts of interest

Pamela Rosa-Gonçalves and David Majerowicz have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa-Gonçalves, P., Majerowicz, D. Pharmacotherapy of Obesity: Limits and Perspectives. Am J Cardiovasc Drugs 19, 349–364 (2019). https://doi.org/10.1007/s40256-019-00328-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-019-00328-6

Navigation