Skip to main content
Log in

Monoclonal Antibodies for Atopic Dermatitis: Progress and Potential

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract:

Atopic dermatitis (AD) is a complex and heterogeneous inflammatory skin disorder with a profound symptom and lesional burden. Moderate-to-severe AD is particularly challenging to manage, as topical treatments are often inadequate and the systemic immunosuppressants are limited by concerns of toxicity and tolerability. Recent AD research has elucidated the mechanisms and immunologic factors involved in AD pathogenesis. These breakthroughs have led to the development of multiple therapeutic monoclonal antibodies that are directed against specific immunologic targets. This review provides an overview on the pathogenesis of AD as well as the rationale for the targets of various monoclonal antibodies. Additionally, this review explores the efficacy and safety of use for various monoclonal antibodies in the management of AD, as well as the potential role of these agents in the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Odhiambo JA, Williams HC, Clayton TO, Robertson CF, Asher MI, ISAAC Phase III Study Group. Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. J Allergy Clin Immunol. 2009;124(6):1251e1223–58e1223.

    Article  Google Scholar 

  2. Garg N, Silverberg JI. Epidemiology of childhood atopic dermatitis. Clin Dermatol. 2015;33(3):281–8.

    Article  PubMed  Google Scholar 

  3. Silverberg JI, Garg NK, Paller AS, Fishbein AB, Zee PC. Sleep disturbances in adults with eczema are associated with impaired overall health: a US population-based study. J Investig Dermatol. 2015;135(1):56–66.

    Article  CAS  PubMed  Google Scholar 

  4. Silverberg JI, Hanifin JM. Adult eczema prevalence and associations with asthma and other health and demographic factors: a US population-based study. J Allergy Clin Immunol. 2013;132(5):1132–8.

    Article  PubMed  Google Scholar 

  5. Bieber T. Atopic dermatitis 2.0: from the clinical phenotype to the molecular taxonomy and stratified medicine. Allergy. 2012;67(12):1475–82.

    CAS  PubMed  Google Scholar 

  6. Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis—part II: immune cell subsets and therapeutic concepts. J Allergy Clin Immunol. 2011;127(6):1420–32.

    Article  CAS  PubMed  Google Scholar 

  7. Proksch E, Brasch J. Abnormal epidermal barrier in the pathogenesis of contact dermatitis. Clin Dermatol. 2012;30(3):335–44.

    Article  PubMed  Google Scholar 

  8. Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA. New insights into atopic dermatitis. J Clin Investig. 2004;113(5):651–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Batista DI, Perez L, Orfali RL, et al. Profile of skin barrier proteins (filaggrin, claudins 1 and 4) and Th1/Th2/Th17 cytokines in adults with atopic dermatitis. J Eur Acad Dermatol Venereol. 2015;29(6):1091–5.

    Article  CAS  PubMed  Google Scholar 

  10. Eichenfield LF, Tom WL, Chamlin SL, et al. Guidelines of care for the management of atopic dermatitis: section 1. Diagnosis and assessment of atopic dermatitis. J Am Acad Dermatol. 2014;70(2):338–51.

    Article  PubMed  Google Scholar 

  11. Kawasaki H, Nagao K, Kubo A, et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129(6):1538.e1536–46.e1536.

    Article  Google Scholar 

  12. Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126(6):1184.e1183–90.e1183.

    Article  Google Scholar 

  13. Suarez-Farinas M, Dhingra N, Gittler J, et al. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol. 2013;132(2):361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gittler JK, Shemer A, Suarez-Farinas M, et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130(6):1344–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Auriemma M, Vianale G, Amerio P, Reale M. Cytokines and T cells in atopic dermatitis. Eur Cytokine Netw. 2013;24(1):37–44.

    CAS  PubMed  Google Scholar 

  16. Brandt EB, Sivaprasad U. Th2 cytokines and atopic dermatitis. J Clin Cell Immunol. 2011;2(3):110.

  17. Chan JL, Davis-Reed L, Kimball AB. Counter-regulatory balance: atopic dermatitis in patients undergoing infliximab infusion therapy. J Drugs Dermatol. 2004;3(3):315–8.

    PubMed  Google Scholar 

  18. Koga C, Kabashima K, Shiraishi N, Kobayashi M, Tokura Y. Possible pathogenic role of Th17 cells for atopic dermatitis. J Investig Dermatol. 2008;128(11):2625–30.

    Article  CAS  PubMed  Google Scholar 

  19. Nograles KE, Zaba LC, Shemer A, et al. IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol. 2009;123(6):1244e1242–52e1242.

    Article  Google Scholar 

  20. Souwer Y, Szegedi K, Kapsenberg ML, de Jong EC. IL-17 and IL-22 in atopic allergic disease. Curr Opin Immunol. 2010;22(6):821–6.

    Article  CAS  PubMed  Google Scholar 

  21. McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol. 2013;131(2):280–91.

    Article  CAS  PubMed  Google Scholar 

  22. Walling HW, Swick BL. Update on the management of chronic eczema: new approaches and emerging treatment options. Clin Cosmet Investig Dermatol. 2010;3:99–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eichenfield LF, Tom WL, Berger TG, et al. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014;71(1):116–32.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Montes-Torres A, Llamas-Velasco M, Perez-Plaza A, Solano-Lopez G, Sanchez-Perez J. Biological treatments in atopic dermatitis. J Clin Med. 2015;4(4):593–613.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harskamp CT, Armstrong AW. Immunology of atopic dermatitis: novel insights into mechanisms and immunomodulatory therapies. Semin Cutan Med Surg. 2013;32(3):132–9.

    Article  PubMed  Google Scholar 

  26. Ibler KS, Jemec GB. Novel investigational therapies for atopic dermatitis. Expert Opin Investig Drugs. 2015;24(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kagami S, Saeki H, Komine M, et al. Interleukin-4 and interleukin-13 enhance CCL26 production in a human keratinocyte cell line, HaCaT cells. Clin Exp Immunol. 2005;141(3):459–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamilton JD, Suarez-Farinas M, Dhingra N, et al. Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol. 2014;134(6):1293–300.

    Article  CAS  PubMed  Google Scholar 

  29. Beck LA, Thaci D, Hamilton JD, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371(2):130–9.

    Article  PubMed  Google Scholar 

  30. Thaci D, Simpson EL, Beck LA, et al. Efficacy and safety of dupilumab in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical treatments: a randomised, placebo-controlled, dose-ranging phase 2b trial. Lancet. 2016;387(10013):40–52.

    Article  CAS  PubMed  Google Scholar 

  31. Simpson EL, Bieber T, Guttman-Yassky E, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2016;375(24):2335–48.

    Article  CAS  PubMed  Google Scholar 

  32. Blauvelt A, de Bruin-Weller M, Gooderham M, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet. 2017;389(10086):2287–303.

    Article  CAS  PubMed  Google Scholar 

  33. Clinicaltrials.gov. Open-label study of dupilumab (REGN668/SAR231893) in patients with atopic dermatitis. https://www.clinicaltrials.gov/ct2/show/NCT01949311. Accessed 10 May 2017.

  34. Deleuran M, Thaci D, Beck L, et al. Long-term safety and efficacy of open-label dupilumab in patients with moderate-to-severe atopic dermatitis. 2017 annual meeting of the American academy of allergy, asthma & immunology (AAAAI); 3–6 Mar 2017; Atlanta.

  35. Clinicaltrials.gov. A study to determine the safety and tolerability of dupilumab (REGN668/SAR231893) in patients aged ≥6 to <18 years with atopic dermatitis (eczema). https://www.clinicaltrials.gov/ct2/show/NCT02407756. Accessed 10 May 2017.

  36. Cork M, Thaci D, DiCioccio T, et al. Pharmacokinetics, safety, and efficacy of dupilumab in a pediatric population with moderate-to-severe atopic dermatitis: results from an open-label phase 2a trial. American academy of dermatology 75th annual meeting; 3–7 Mar 2017; Orlando.

  37. Renert-Yuval Y, Guttman-Yassky E. Systemic therapies in atopic dermatitis: the pipeline. Clin Dermatol. 2017;35(4):387–97.

    Article  PubMed  Google Scholar 

  38. Clinicaltrials.gov. Phase 2 study to evaluate the efficacy and safety of tralokinumab in adults with atopic dermatitis. https://www.clinicaltrials.gov/ct2/show/NCT02347176. Accessed 10 May 2017.

  39. Wollenberg A, Howell MD, Guttman-Yassky E, et al. A phase 2b dose-ranging efficacy and safety study of tralokinumab in adult patients with moderate to severe atopic dermatitis. American Academy of Dermatology 75th Annual Meeting; 3–7 Mar 2017; Orlando.

  40. Brightling CE, Chanez P, Leigh R, et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med. 2015;3(9):692–701.

    Article  CAS  PubMed  Google Scholar 

  41. Clinicaltrials.gov. Tralokinumab monotherapy for moderate to severe atopic dermatitis (ECZema TRAlokinumab Trial no. 2) (ECZTRA 2). https://www.clinicaltrials.gov/ct2/show/NCT03160885. Accessed 10 May 2017.

  42. Clinicaltrials.gov. Tralokinumab monotherapy for moderate to severe atopic dermatitis - ECZTRA 1 (ECZema TRAlokinumab Trial no. 1) (ECZTRA 1). https://www.clinicaltrials.gov/ct2/show/NCT03131648. Accessed 10 May 2017.

  43. Clinicaltrials.gov. A study of lebrikizumab in participants with persistent moderate to severe atopic dermatitis. https://www.clinicaltrials.gov/ct2/show/NCT02340234. Accessed 10 May 2017.

  44. Simpson E, Flohr C, Eichenfield L, et al. Efficacy and safety of lebrikizumab in patients with atopic dermatitis: a phase II randomized, controlled trial (TREBLE). 25th EADV Congress; 28 Sep–2 Oct 2016; Vienna.

  45. Clinicaltrials.gov. A study to evaluate the safety of lebrikizumab compared to topical corticosteroids in adult patients with atopic dermatitis. https://www.clinicaltrials.gov/ct2/show/NCT02465606. Accessed 10 May 2017.

  46. Corren J. Inhibition of interleukin-5 for the treatment of eosinophilic diseases. Discov Med. 2012;13(71):305–12.

    PubMed  Google Scholar 

  47. Molfino NA, Gossage D, Kolbeck R, Parker JM, Geba GP. Molecular and clinical rationale for therapeutic targeting of interleukin-5 and its receptor. Clin Exp Allergy. 2012;42(5):712–37.

    Article  CAS  PubMed  Google Scholar 

  48. Smith DA, Minthorn EA, Beerahee M. Pharmacokinetics and pharmacodynamics of mepolizumab, an anti-interleukin-5 monoclonal antibody. Clin Pharmacokinet. 2011;50(4):215–27.

    Article  CAS  PubMed  Google Scholar 

  49. Oldhoff JM, Darsow U, Werfel T, et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy. 2005;60(5):693–6.

    Article  CAS  PubMed  Google Scholar 

  50. Freedman JD, Gottlieb AB, Lizzul PF. Physician performance measurement: tiered networks and dermatology (an opportunity and a challenge). J Am Acad Dermatol. 2011;64(6):1164–9.

    Article  PubMed  Google Scholar 

  51. Clinicaltrials.gov. Efficacy and safety study of mepolizumab in subjects with moderate to severe atopic dermatitis. https://www.clinicaltrials.gov/ct2/show/NCT03055195. Accessed 10 May 2017.

  52. Toshitani A, Ansel JC, Chan SC, Li SH, Hanifin JM. Increased interleukin 6 production by T cells derived from patients with atopic dermatitis. J Investig Dermatol. 1993;100(3):299–304.

    Article  CAS  PubMed  Google Scholar 

  53. Navarini AA, French LE, Hofbauer GF. Interrupting IL-6-receptor signaling improves atopic dermatitis but associates with bacterial superinfection. J Allergy Clin Immunol. 2011;128(5):1128–30.

    Article  CAS  PubMed  Google Scholar 

  54. Maini RN, Taylor PC, Szechinski J, et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum. 2006;54(9):2817–29.

    Article  CAS  PubMed  Google Scholar 

  55. Toda M, Leung DY, Molet S, et al. Polarized in vivo expression of IL-11 and IL-17 between acute and chronic skin lesions. J Allergy Clin Immunol. 2003;111(4):875–81.

    Article  CAS  PubMed  Google Scholar 

  56. Dhingra N, Guttman-Yassky E. A possible role for IL-17A in establishing Th2 inflammation in murine models of atopic dermatitis. J Invest Dermatol. 2014;134(8):2071–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Noda S, Suarez-Farinas M, Ungar B, et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol. 2015;136(5):1254–64.

    Article  CAS  PubMed  Google Scholar 

  58. Clinicaltrials.gov Secukinumab for Treatment of Atopic Dermatitis. https://clinicaltrials.gov/ct2/show/NCT02594098. Accessed 10 May 2017.

  59. Clinicaltrials.gov. Randomized placebo controlled study to determine safety, pharmacodynamics and efficacy of ILV-094 in atopic dermatitis. https://www.clinicaltrials.gov/ct2/show/NCT01941537. Accessed 10 May 2017.

  60. Noda S, Krueger JG, Guttman-Yassky E. The translational revolution and use of biologics in patients with inflammatory skin diseases. J Allergy Clin Immunol. 2015;135(2):324–36.

    Article  CAS  PubMed  Google Scholar 

  61. Zaba LC, Suarez-Farinas M, Fuentes-Duculan J, et al. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin Immunol. 2009;124(5):1022–10.e1–395.

  62. Agusti-Mejias A, Messeguer F, Garcia R, Febrer I. Severe refractory atopic dermatitis in an adolescent patient successfully treated with ustekinumab. Ann Dermatol. 2013;25(3):368–70.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shroff A, Guttman-Yassky E. Successful use of ustekinumab therapy in refractory severe atopic dermatitis. JAAD Case Rep. 2015;1(1):25–6.

    Article  PubMed  Google Scholar 

  64. Puya R, Alvarez-Lopez M, Velez A, Casas Asuncion E, Moreno JC. Treatment of severe refractory adult atopic dermatitis with ustekinumab. Int J Dermatol. 2012;51(1):115–6.

    Article  PubMed  Google Scholar 

  65. Fernandez-Anton Martinez MC, Alfageme Roldan F, Ciudad Blanco C, Suarez Fernandez R. Ustekinumab in the treatment of severe atopic dermatitis: a preliminary report of our experience with 4 patients. Actas Dermosifiliogr. 2014;105(3):312–3.

    Article  CAS  PubMed  Google Scholar 

  66. Wlodek C, Hewitt H, Kennedy CT. Use of ustekinumab for severe refractory atopic dermatitis in a young teenager. Clin Exp Dermatol. 2016;41(6):625–7.

    Article  CAS  PubMed  Google Scholar 

  67. Nic Dhonncha E, Clowry J, Dunphy M, Buckley C, Field S, Paul L. Treatment of severe atopic dermatitis with ustekinumab: a case series of 10 patients. Br J Dermatol. 2016. doi:10.1111/bjd.15262.

    PubMed  Google Scholar 

  68. Samorano LP, Hanifin JM, Simpson EL, Leshem YA. Inadequate response to ustekinumab in atopic dermatitis—a report of two patients. J Eur Acad Dermatol Venereol. 2016;30(3):522–3.

    Article  CAS  PubMed  Google Scholar 

  69. Khattri S, Brunner PM, Garcet S, et al. Efficacy and safety of ustekinumab treatment in adults with moderate-to-severe atopic dermatitis. Exp Dermatol. 2017;26(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  70. Saeki H, Kabashima K, Tokura Y, et al. Efficacy and safety of ustekinumab in japanese patients with severe atopic dermatitis: a randomised, double-blind, placebo-controlled, phase 2 study. BrJ Dermatol. 2017. doi:10.1111/bjd.15493.

    Google Scholar 

  71. Dillon SR, Sprecher C, Hammond A, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004;5(7):752–60.

    Article  CAS  PubMed  Google Scholar 

  72. Sonkoly E, Muller A, Lauerma AI, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. 2006;117(2):411–7.

    Article  CAS  PubMed  Google Scholar 

  73. Grimstad O, Sawanobori Y, Vestergaard C, et al. Anti-interleukin-31-antibodies ameliorate scratching behaviour in NC/Nga mice: a model of atopic dermatitis. Exp Dermatol. 2009;18(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  74. Nobbe S, Dziunycz P, Muhleisen B, et al. IL-31 expression by inflammatory cells is preferentially elevated in atopic dermatitis. Acta Derm Venereol. 2012;92(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  75. Szegedi K, Kremer AE, Kezic S, et al. Increased frequencies of IL-31-producing T cells are found in chronic atopic dermatitis skin. Exp Dermatol. 2012;21(6):431–6.

    Article  CAS  PubMed  Google Scholar 

  76. Kasutani K, Fujii E, Ohyama S, et al. Anti-IL-31 receptor antibody is shown to be a potential therapeutic option for treating itch and dermatitis in mice. Br J Pharmacol. 2014;171(22):5049–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lewis KE, Holdren MS, Maurer MF, et al. Interleukin (IL) 31 induces in cynomolgus monkeys a rapid and intense itch response that can be inhibited by an IL-31 neutralizing antibody. J Eur Acad Dermatol Venereol. 2017;31(1):142–50.

    Article  CAS  PubMed  Google Scholar 

  78. Oyama S, Kitamura H, Kuramochi T, et al. Cynomolgus monkey model of interleukin-31-induced scratching depicts blockade of human interleukin-31 receptor A by a humanized monoclonal antibody. Exp Dermatol. 2016. doi:10.1111/exd.13236.

    PubMed  Google Scholar 

  79. Nemoto O, Furue M, Nakagawa H, et al. The first trial of CIM331, a humanized antihuman interleukin-31 receptor A antibody, in healthy volunteers and patients with atopic dermatitis to evaluate safety, tolerability and pharmacokinetics of a single dose in a randomized, double-blind, placebo-controlled study. Br J Dermatol. 2016;174(2):296–304.

    Article  CAS  PubMed  Google Scholar 

  80. Clinicaltrials.gov. A phase 2 study of CIM331 for atopic dermatitis patients. https://www.clinicaltrials.gov/ct2/show/NCT01986933. Accessed 10 May 2017.

  81. Ruzicka T, Hanifin JM, Furue M, et al. Anti-interleukin-31 receptor A antibody for atopic dermatitis. N Engl J Med. 2017;376(9):826–35.

    Article  CAS  PubMed  Google Scholar 

  82. Hanifin J, Ruzicka T, Masutaka F, et al. Randomized, double-blind, placebo-controlled, multicenter, multidose phase II study of anti-interleukin-31 receptor A monoclonal antibody CIM331 (nemolizumab) in patients with moderate to severe atopic dermatitis. American academy of dermatology 74th annual meeting; 4–8 Mar 2016; Washington, DC.

  83. Kabashima K. Efficacy and safety of nemolizumab over 64 weeks in patients with moderate-to-severe atopic dermatitis: results from the long-term extension of the phase 2 study. American academy of dermatology 75th annual meeting; 3–7 Mar 2017; Orlando.

  84. Clinicaltrials.gov. Dose-ranging study of nemolizumab in atopic dermatitis. https://www.clinicaltrials.gov/ct2/show/NCT03100344. Accessed 10 May 2017.

  85. Chacko M, Weinberg JM. Efalizumab. Dermatol Ther. 2007;20(4):265–9.

    Article  PubMed  Google Scholar 

  86. Weinberg JM, Siegfried EC. Successful treatment of severe atopic dermatitis in a child and an adult with the T-cell modulator efalizumab. Arch Dermatol. 2006;142(5):555–8.

    Article  PubMed  Google Scholar 

  87. Ohmura T, Konomi A, Satoh Y, et al. Suppression of atopic-like dermatitis by treatment with antibody to lymphocyte function-associated antigen-1 in NC/Nga mouse. Eur J Pharmacol. 2004;504(1–2):113–7.

    Article  CAS  PubMed  Google Scholar 

  88. Farshidi A, Sadeghi P. Successful treatment of severe refractory atopic dermatitis with efalizumab. J Drugs Dermatol. 2006;5(10):994–8.

    PubMed  Google Scholar 

  89. Hassan AS, Kaelin U, Braathen LR, Yawalkar N. Clinical and immunopathologic findings during treatment of recalcitrant atopic eczema with efalizumab. J Am Acad Dermatol. 2007;56(2):217–21.

    Article  PubMed  Google Scholar 

  90. Takiguchi R, Tofte S, Simpson B, et al. Efalizumab for severe atopic dermatitis: a pilot study in adults. J Am Acad Dermatol. 2007;56(2):222–7.

    Article  PubMed  Google Scholar 

  91. Ibler K, Dam TN, Gniadecki R, Kragballe K, Jemec GB, Agner T. Efalizumab for severe refractory atopic eczema: retrospective study on 11 cases. J Eur Acad Dermatol Venereol. 2010;24(7):837–9.

    Article  CAS  PubMed  Google Scholar 

  92. Baniandres O, Pulido A, Silvente C, Suarez R, Lazaro P. Clinical outcomes in patients with psoriasis following discontinuation of efalizumab due to suspension of marketing authorization. Actas Dermosifiliogr. 2010;101(5):421–7.

    Article  CAS  PubMed  Google Scholar 

  93. Liu FT, Goodarzi H, Chen HY. IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol. 2011;41(3):298–310.

    Article  CAS  PubMed  Google Scholar 

  94. Prussin C, Griffith DT, Boesel KM, Lin H, Foster B, Casale TB. Omalizumab treatment downregulates dendritic cell FcepsilonRI expression. J Allergy Clin Immunol. 2003;112(6):1147–54.

    Article  CAS  PubMed  Google Scholar 

  95. Holm JG, Agner T, Sand C, Thomsen SF. Omalizumab for atopic dermatitis: case series and a systematic review of the literature. Int J Dermatol. 2017;56(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  96. Wang HH, Li YC, Huang YC. Efficacy of omalizumab in patients with atopic dermatitis: a systematic review and meta-analysis. J Allergy Clin Immunol. 2016;138(6):1719.e1711–22.e1711.

    Article  Google Scholar 

  97. Clinicaltrials.gov. Role of anti-IgE in severe childhood eczema (ADAPT). https://www.clinicaltrials.gov/ct2/show/NCT02300701. Accessed 10 May 2017.

  98. Clinicaltrials.gov. Study evaluating the safety and efficacy of QGE031 in atopic dermatitis patients. https://www.clinicaltrials.gov/ct2/show/NCT01552629. Accessed 10 May 2017.

  99. Bangert C. Efficacy, safety and pharmacodynamics of a high-affinity anti-IgE antibody in patients with moderate to severe atopic dermatitis: a randomized, double-blind, placebo-controlled, proof of concept study. 25th EADV congress; 28 Sep–2 Oct 2016; Vienna.

  100. Lin J, Ziring D, Desai S, et al. TNFalpha blockade in human diseases: an overview of efficacy and safety. Clin Immunol. 2008;126(1):13–30.

    Article  CAS  PubMed  Google Scholar 

  101. Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008;117(2):244–79.

    Article  CAS  PubMed  Google Scholar 

  102. Bieber T. Atopic dermatitis. N Engl J Med. 2008;358(14):1483–94.

    Article  CAS  PubMed  Google Scholar 

  103. Jacobi A, Antoni C, Manger B, Schuler G, Hertl M. Infliximab in the treatment of moderate to severe atopic dermatitis. J Am Acad Dermatol. 2005;52(3 Pt 1):522–6.

    Article  PubMed  Google Scholar 

  104. Cassano N, Loconsole F, Coviello C, Vena GA. Infliximab in recalcitrant severe atopic eczema associated with contact allergy. Int J Immunopathol Pharmacol. 2006;19(1):237–40.

    CAS  PubMed  Google Scholar 

  105. Buka RL, Resh B, Roberts B, Cunningham BB, Friedlander S. Etanercept is minimally effective in 2 children with atopic dermatitis. J Am Acad Dermatol. 2005;53(2):358–9.

    Article  PubMed  Google Scholar 

  106. Lebas D, Staumont-Salle D, Solau-Gervais E, Flipo RM, Delaporte E. Cutaneous manifestations during treatment with TNF-alpha blockers: 11 cases [in French]. Ann Dermatol Venereol. 2007;134(4 Pt 1):337–42.

    Article  CAS  PubMed  Google Scholar 

  107. Mangge H, Gindl S, Kenzian H, Schauenstein K. Atopic dermatitis as a side effect of anti-tumor necrosis factor-alpha therapy. J Rheumatol. 2003;30(11):2506–7.

    PubMed  Google Scholar 

  108. Ruiz-Villaverde R, Galan-Gutierrez M. Exacerbation of atopic dermatitis in a patient treated with infliximab. Actas Dermosifiliogr. 2012;103(8):743–6.

    Article  CAS  PubMed  Google Scholar 

  109. Wright RC. Atopic dermatitis-like eruption precipitated by infliximab. J Am Acad Dermatol. 2003;49(1):160–1.

    Article  PubMed  Google Scholar 

  110. Ito T, Wang YH, Duramad O, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202(9):1213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu YJ. Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med. 2006;203(2):269–73.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–80.

    CAS  PubMed  Google Scholar 

  113. Han NR, Moon PD, Kim HM, Jeong HJ. Tryptanthrin ameliorates atopic dermatitis through down-regulation of TSLP. Arch Biochem Biophys. 2014;542:14–20.

    Article  CAS  PubMed  Google Scholar 

  114. Lee EB, Kim KW, Hong JY, Jee HM, Sohn MH, Kim KE. Increased serum thymic stromal lymphopoietin in children with atopic dermatitis. Pediatr Allergy Immunol. 2010;21(2 Pt 2):e457–60.

    Article  PubMed  Google Scholar 

  115. Clinicaltrials.gov. Safety study of AMG 157 in healthy subjects and subjects with atopic dermatitis. https://www.clinicaltrials.gov/ct2/show/NCT00757042. Accessed 10 May 2017.

  116. Clinicaltrials.gov. Phase 2a study to evaluate the efficacy and safety of MEDI9929 in adults with atopic dermatitis (ALLEVIAD). https://clinicaltrials.gov/ct2/show/NCT02525094. Accessed 10 May 2017.

  117. Bremmer MS, Bremmer SF, Baig-Lewis S, Simpson EL. Are biologics safe in the treatment of atopic dermatitis? A review with a focus on immediate hypersensitivity reactions. J Am Acad Dermatol. 2009;61(4):666–76.

    Article  CAS  PubMed  Google Scholar 

  118. Czarnowicki T, Gonzalez J, Bonifacio KM, et al. Diverse activation and differentiation of multiple B-cell subsets in patients with atopic dermatitis but not in patients with psoriasis. J Allergy Clin Immunol. 2016;137(1):118.e115–29.e115.

    Article  Google Scholar 

  119. Bennett DD, Ohanian M, Cable CT. Rituximab in severe skin diseases: target, disease, and dose. Clin Pharmacol. 2010;2:135–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Nagel A, Hertl M, Eming R. B-cell-directed therapy for inflammatory skin diseases. J Invest Dermatol. 2009;129(2):289–301.

    Article  CAS  PubMed  Google Scholar 

  121. Simon D, Hosli S, Kostylina G, Yawalkar N, Simon HU. Anti-CD20 (rituximab) treatment improves atopic eczema. J Allergy Clin Immunol. 2008;121(1):122–8.

    Article  CAS  PubMed  Google Scholar 

  122. Sediva A, Kayserova J, Vernerova E, et al. Anti-CD20 (rituximab) treatment for atopic eczema [letter]. J Allergy Clin Immunol. 2008;121(6):1515–6 (author reply 1516–1517).

    Article  PubMed  Google Scholar 

  123. McDonald BS, Jones J, Rustin M. Rituximab as a treatment for severe atopic eczema: failure to improve in three consecutive patients. Clin Exp Dermatol. 2016;41(1):45–7.

    Article  CAS  PubMed  Google Scholar 

  124. D’Erme AM, Romanelli M, Chiricozzi A. Spotlight on dupilumab in the treatment of atopic dermatitis: design, development, and potential place in therapy. Drug Des Devel Ther. 2017;11:1473–80.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan I. Silverberg.

Ethics declarations

Disclosures

Paras Vakharia has no relevant disclosures or conflict of interests. Jonathan Silverberg has been an investigator for Abbvie, Celgene, Chugai, Eli Lilly, Galderma, GlaxoSmithKline, Realm, Regeneron-Sanofi; consultant for Abbvie, Anacor, Eli Lilly, Galderma, GlaxoSmithKline, Incyte, Kiniksa, Menlo, Pfizer, Realm, Regeneron-Sanofi; and speaker for Regeneron-Sanofi.

Funding

This publication was made possible with support from the Agency for Healthcare Research and Quality (AHRQ), Grant number K12 HS023011, and the Dermatology Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakharia, P.P., Silverberg, J.I. Monoclonal Antibodies for Atopic Dermatitis: Progress and Potential. BioDrugs 31, 409–422 (2017). https://doi.org/10.1007/s40259-017-0241-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-017-0241-6

Navigation