Skip to main content
Log in

Propofol: A Review of its Role in Pediatric Anesthesia and Sedation

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

A Correction to this article was published on 13 August 2018

Abstract

Propofol is an intravenous agent used commonly for the induction and maintenance of anesthesia, procedural, and critical care sedation in children. The mechanisms of action on the central nervous system involve interactions at various neurotransmitter receptors, especially the gamma-aminobutyric acid A receptor. Approved for use in the USA by the Food and Drug Administration in 1989, its use for induction of anesthesia in children less than 3 years of age still remains off-label. Despite its wide use in pediatric anesthesia, there is conflicting literature about its safety and serious adverse effects in particular subsets of children. Particularly as children are not “little adults”, in this review, we emphasize the maturational aspects of propofol pharmacokinetics. Despite the myriad of propofol pharmacokinetic-pharmacodynamic studies and the ability to use allometrical scaling to smooth out differences due to size and age, there is no optimal model that can be used in target controlled infusion pumps for providing closed loop total intravenous anesthesia in children. As the commercial formulation of propofol is a nutrient-rich emulsion, the risk for bacterial contamination exists despite the Food and Drug Administration mandating addition of antimicrobial preservative, calling for manufacturers’ directions to discard open vials after 6 h. While propofol has advantages over inhalation anesthesia such as less postoperative nausea and emergence delirium in children, pain on injection remains a problem even with newer formulations. Propofol is known to depress mitochondrial function by its action as an uncoupling agent in oxidative phosphorylation. This has implications for children with mitochondrial diseases and the occurrence of propofol-related infusion syndrome, a rare but seriously life-threatening complication of propofol. At the time of this review, there is no direct evidence in humans for propofol-induced neurotoxicity to the infant brain; however, current concerns of neuroapoptosis in developing brains induced by propofol persist and continue to be a focus of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Trapani G, Altomare C, Liso G, Sanna E, Biggio G. Propofol in anesthesia: mechanism of action, structure-activity relationships, and drug delivery. Curr Med Chem. 2000;7(2):249–71.

    Article  CAS  PubMed  Google Scholar 

  2. Borgeat A, Popovic V, Meier D, Schwander D. Comparison of propofol and thiopental/halothane for short-duration ENT surgical procedures in children. Anesth Analg. 1990;71(5):511–5.

    Article  CAS  PubMed  Google Scholar 

  3. Reed MD, Yamashita TS, Marx CM, Myers CM, Blumer JL. A pharmacokinetically based propofol dosing strategy for sedation of the critically ill, mechanically ventilated pediatric patient. Crit Care Med. 1996;24(9):1473–81.

    Article  CAS  PubMed  Google Scholar 

  4. Reed MD, Blumer JL. Propofol bashing: the time to stop is now! Crit Care Med. 1996;24(1):175–6.

    Article  CAS  PubMed  Google Scholar 

  5. Angelini G, Ketzler JT, Coursin DB. Use of propofol and other nonbenzodiazepine sedatives in the intensive care unit. Crit Care Clinics. 2001;17(4):863–80.

    Article  CAS  Google Scholar 

  6. Kulling D, Rothenbuhler R, Inauen W. Safety of nonanesthetist sedation with propofol for outpatient colonoscopy and esophagogastroduodenoscopy. Endoscopy. 2003;35(8):679–82. doi:10.1055/s-2003-41518.

    Article  CAS  PubMed  Google Scholar 

  7. Smith MC, Williamson J, Yaster M, Boyd GJ, Heitmiller ES. Off-label use of medications in children undergoing sedation and anesthesia. Anesth Analg. 2012;115(5):1148–54. doi:10.1213/ANE.0b013e3182501b04.

    Article  CAS  PubMed  Google Scholar 

  8. Langley MS, Heel RC. Propofol: a review of its pharmacodynamic and pharmacokinetic properties and use as an intravenous anaesthetic. Drugs. 1988;35(4):334–72.

    Article  CAS  PubMed  Google Scholar 

  9. Fulton B, Sorkin EM. Propofol: an overview of its pharmacology and a review of its clinical efficacy in intensive care sedation. Drugs. 1995;50(4):636–57.

    Article  CAS  PubMed  Google Scholar 

  10. Thompson KA, Goodale DB. The recent development of propofol (DIPRIVAN). Intensive Care Med. 2000;26(Suppl 4):S400–4.

    Article  PubMed  Google Scholar 

  11. James R, Glen JB. Synthesis, biological evaluation, and preliminary structure-activity considerations of a series of alkylphenols as intravenous anesthetic agents. J Med Chem. 1980;23(12):1350–7.

    Article  CAS  PubMed  Google Scholar 

  12. Briggs LP, Clarke RS, Watkins J. An adverse reaction to the administration of disoprofol (Diprivan). Anaesthesia. 1982;37(11):1099–101.

    Article  CAS  PubMed  Google Scholar 

  13. Cummings GC, Dixon J, Kay NH, Windsor JP, Major E, Morgan M, et al. Dose requirements of ICI 35,868 (propofol, ‘Diprivan’) in a new formulation for induction of anaesthesia. Anaesthesia. 1984;39(12):1168–71.

    Article  CAS  PubMed  Google Scholar 

  14. Baker MT, Gregerson MS, Martin SM, Buettner GR. Free radical and drug oxidation products in an intensive care unit sedative: propofol with sulfite. Crit Care Med. 2003;31(3):787–92. doi:10.1097/01.CCM.0000053560.05156.73.

    Article  CAS  PubMed  Google Scholar 

  15. Jensen V, Rappaport BA. The reality of drug shortages: the case of the injectable agent propofol. N Engl J Med. 2010;363(9):806–7. doi:10.1056/NEJMp1005849.

    Article  CAS  PubMed  Google Scholar 

  16. Calvo R, Telletxea S, Leal N, Aguilera L, Suarez E, De La Fuente L, et al. Influence of formulation on propofol pharmacokinetics and pharmacodynamics in anesthetized patients. Acta Anaesthesiol Scand. 2004;48(8):1038–48. doi:10.1111/j.0001-5172.2004.00467.x.

    Article  CAS  PubMed  Google Scholar 

  17. Larsen R, Beerhalter U, Erdkonig R, Larsen B. Injection pain from propofol-MCT–LCT in children. A comparison with propofol-LCT. Der Anaesth. 2001;50(9):676–8.

    Article  CAS  Google Scholar 

  18. Le Guen M, Grassin-Delyle S, Cornet C, Genty A, Chazot T, Dardelle D, et al. Comparison of the potency of different propofol formulations: a randomized, double-blind trial using closed-loop administration. Anesthesiology. 2014;120(2):355–64. doi:10.1097/01.anes.0000435741.97234.04.

    Article  PubMed  CAS  Google Scholar 

  19. Cho J, Cho JC, Lee P, Lee M, Oh E. Formulation and evaluation of an alternative triglyceride-free propofol microemulsion. Arch Pharm Res. 2010;33(9):1375–87. doi:10.1007/s12272-010-0911-0.

    Article  CAS  PubMed  Google Scholar 

  20. Sanna E, Mascia MP, Klein RL, Whiting PJ, Biggio G, Harris RA. Actions of the general anesthetic propofol on recombinant human GABAA receptors: influence of receptor subunits. J Pharmacol Exp Ther. 1995;274(1):353–60.

    CAS  PubMed  Google Scholar 

  21. Collins GG. Effects of the anaesthetic 2,6-diisopropylphenol on synaptic transmission in the rat olfactory cortex slice. Br J Pharmacol. 1988;95(3):939–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sieghart W. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev. 1995;47(2):181–234.

    CAS  PubMed  Google Scholar 

  23. Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, et al. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev. 1998;50(2):291–313.

    CAS  PubMed  Google Scholar 

  24. Imperato A, Dazzi L, Obinu MC, Gessa GL, Biggio G. Inhibition of hippocampal acetylcholine-release by benzodiazepines: antagonism by flumazenil. Eur J Pharmacol. 1993;238(1):135–7. doi:10.1016/0014-2999(93)90518-M.

    Article  CAS  PubMed  Google Scholar 

  25. Krasowski MD, Jenkins A, Flood P, Kung AY, Hopfinger AJ, Harrison NL. General anesthetic potencies of a series of propofol analogs correlate with potency for potentiation of gamma-aminobutyric acid (GABA) current at the GABA(A) receptor but not with lipid solubility. J Pharmacol Exp Ther. 2001;297(1):338–51.

    CAS  PubMed  Google Scholar 

  26. Peduto VA, Concas A, Santoro G, Biggio G, Gessa GL. Biochemical and electrophysiologic evidence that propofol enhances GABAergic transmission in the rat-brain. Anesthesiology. 1991;75(6):1000–9. doi:10.1097/00000542-199112000-00012.

    Article  CAS  PubMed  Google Scholar 

  27. Sanna E, Murgia A, Casula A, Biggio G. Differential subunit dependence of the actions of the general anesthetics alphaxalone and etomidate at gamma-aminobutyric acid type A receptors expressed in Xenopus laevis oocytes. Mol Pharmacol. 1997;51(3):484–90.

    CAS  PubMed  Google Scholar 

  28. Hales TG, Lambert JJ. The actions of propofol on inhibitory amino-acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurons. Br J Pharmacol. 1991;104(3):619–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Machu TK, Harris RA. Alcohols and anesthetics enhance the function of 5-hydroxytryptamine(3) receptors expressed in Xenopus laevis oocytes. J Pharmacol Exp Ther. 1994;271(2):898–905.

    CAS  PubMed  Google Scholar 

  30. Yamakura T, Sakimura K, Shimoji K, Mishina M. Effects of propofol on various Ampa-selective, kainate-selective and NMDA-selective glutamate-receptor channels expressed in Xenopus oocytes. Neurosci Lett. 1995;188(3):187–90. doi:10.1016/0304-3940(95)11431-U.

    Article  CAS  PubMed  Google Scholar 

  31. Simons PJ, Cockshott ID, Douglas EJ, Gordon EA, Hopkins K, Rowland M. Disposition in male-volunteers of a subanaesthetic intravenous dose of an oil in water emulsion of propofol-C-14. Xenobiotica. 1988;18(4):429–40.

    Article  CAS  PubMed  Google Scholar 

  32. Hiraoka H, Yamamoto K, Okano N, Morita T, Goto F, Horiuchi R. Changes in drug plasma concentrations of an extensively bound and highly extracted drug, propofol, in response to altered plasma binding. Clin Pharmacol Ther. 2004;75(4):324–30. doi:10.1016/j.clpt.2003.12.004.

    Article  CAS  PubMed  Google Scholar 

  33. Dawidowicz AL, Fornal E, Mardarowicz M, Fijalkowska A. The role of human lungs in the biotransformation of propofol. Anesthesiology. 2000;93(4):992–7. doi:10.1097/00000542-200010000-00020.

    Article  CAS  PubMed  Google Scholar 

  34. He YL, Ueyama H, Tashiro C, Mashimo T, Yoshiya I. Pulmonary disposition of propofol in surgical patients. Anesthesiology. 2000;93(4):986–91. doi:10.1097/00000542-200010000-00019.

    Article  CAS  PubMed  Google Scholar 

  35. Hiraoka H, Yamamoto K, Miyoshi S, Morita T, Nakamura K, Kadoi Y, et al. Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol. 2005;60(2):176–82. doi:10.1111/j.1365-2125.2005.02393.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Schuttler J, Ihmsen H. Population pharmacokinetics of propofol: a multicenter study. Anesthesiology. 2000;92(3):727–38.

    Article  CAS  PubMed  Google Scholar 

  37. Rigby-Jones AE, Nolan JA, Priston MJ, Wright PM, Sneyd JR, Wolf AR. Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit. Anesthesiology. 2002;97(6):1393–400.

    Article  CAS  PubMed  Google Scholar 

  38. Al-Jahdari WS, Yamamoto K, Hiraoka H, Nakamura K, Goto F, Horiuchi R. Prediction of total propofol clearance based on enzyme activities in microsomes from human kidney and liver. Eur J Clin Pharmacol. 2006;62(7):527–33. doi:10.1007/s00228-006-0130-2.

    Article  CAS  PubMed  Google Scholar 

  39. Tateishi T, Nakura H, Asoh M, Watanabe M, Tanaka M, Kumai T, et al. A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci. 1997;61(26):2567–74.

    Article  CAS  PubMed  Google Scholar 

  40. Allegaert K, Peeters MY, Verbesselt R, Tibboel D, Naulaers G, de Hoon JN, et al. Inter-individual variability in propofol pharmacokinetics in preterm and term neonates. Br J Anaesth. 2007;99(6):864–70. doi:10.1093/bja/aem294.

    Article  CAS  PubMed  Google Scholar 

  41. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56. doi:10.2165/00003088-200645090-00005.

    Article  CAS  PubMed  Google Scholar 

  42. Constant I, Rigouzzo A. Which model for propofol TCI in children. Paediatr Anaesth. 2010;20(3):233–9. doi:10.1111/j.1460-9592.2010.03269.x.

    Article  PubMed  Google Scholar 

  43. Allegaert K, de Hoon J, Verbesselt R, Naulaers G, Murat I. Maturational pharmacokinetics of single intravenous bolus of propofol. Paediatr Anaesth. 2007;17(11):1028–34. doi:10.1111/j.1460-9592.2007.02285.x.

    Article  PubMed  Google Scholar 

  44. Anderson BJ. Pediatric models for adult target-controlled infusion pumps. Paediatr Anaesth. 2010;20(3):223–32. doi:10.1111/j.1460-9592.2009.03072.x.

    Article  PubMed  Google Scholar 

  45. Kataria BK, Ved SA, Nicodemus HF, Hoy GR, Lea D, Dubois MY, et al. The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology. 1994;80(1):104–22.

    Article  CAS  PubMed  Google Scholar 

  46. Knibbe CA, Zuideveld KP, Aarts LP, Kuks PF, Danhof M. Allometric relationships between the pharmacokinetics of propofol in rats, children and adults. Br J Clin Pharmacol. 2005;59(6):705–11. doi:10.1111/j.1365-2125.2005.02239.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Bartelink IH, Rademaker CM, Schobben AF, van den Anker JN. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet. 2006;45(11):1077–97. doi:10.2165/00003088-200645110-00003.

    Article  CAS  PubMed  Google Scholar 

  48. Jeleazcov C, Ihmsen H, Schmidt J, Ammon C, Schwilden H, Schuttler J, et al. Pharmacodynamic modelling of the bispectral index response to propofol-based anaesthesia during general surgery in children. Br J Anaesth. 2008;100(4):509–16. doi:10.1093/bja/aem408.

    Article  CAS  PubMed  Google Scholar 

  49. Rigouzzo A, Girault L, Louvet N, Servin F, De-Smet T, Piat V, et al. The relationship between bispectral index and propofol during target-controlled infusion anesthesia: a comparative study between children and young adults. Anesth Analga. 2008;106(4):1109–16. doi:10.1213/ane.0b013e318164f388.

    Article  CAS  Google Scholar 

  50. Sadhasivam S, Ganesh A, Robison A, Kaye R, Watcha MF. Validation of the bispectral index monitor for measuring the depth of sedation in children. Anesth Analg. 2006;102(2):383–8. doi:10.1213/01.ANE.0000184115.57837.30.

    Article  PubMed  Google Scholar 

  51. Coppens M, Van Limmen JG, Schnider T, Wyler B, Bonte S, Dewaele F, et al. Study of the time course of the clinical effect of propofol compared with the time course of the predicted effect-site concentration: performance of three pharmacokinetic-dynamic models. Br J Anaesth. 2010;104(4):452–8. doi:10.1093/bja/aeq028.

    Article  CAS  PubMed  Google Scholar 

  52. Rigouzzo A, Servin F, Constant I. Pharmacokinetic-pharmacodynamic modeling of propofol in children. Anesthesiology. 2010;113(2):343–52. doi:10.1097/ALN.0b013e3181e4f4ca.

    Article  CAS  PubMed  Google Scholar 

  53. Bjornsson MA, Norberg A, Kalman S, Karlsson MO, Simonsson US. A two-compartment effect site model describes the bispectral index after different rates of propofol infusion. J Pharmacokinet Pharmacodyn. 2010;37(3):243–55. doi:10.1007/s10928-010-9157-1.

    Article  PubMed  CAS  Google Scholar 

  54. Wiczling P, Bienert A, Sobczynski P, Hartmann-Sobczynska R, Bieda K, Marcinkowska A, et al. Pharmacokinetics and pharmacodynamics of propofol in patients undergoing abdominal aortic surgery. Pharmacol Rep. 2012;64(1):113–22.

    Article  CAS  PubMed  Google Scholar 

  55. McFarlan CS, Anderson BJ, Short TG. The use of propofol infusions in paediatric anaesthesia: a practical guide. Paediatr Anaesth. 1999;9(3):209–16.

    CAS  PubMed  Google Scholar 

  56. Munoz HR, Cortinez LI, Ibacache ME, Leon PJ. Effect site concentrations of propofol producing hypnosis in children and adults: comparison using the bispectral index. Acta Anaesthesiol Scand. 2006;50(7):882–7. doi:10.1111/j.1399-6576.2006.01062.x.

    Article  CAS  PubMed  Google Scholar 

  57. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA. 2012;307(5):483–90. doi:10.1001/jama.2012.40.

    Article  PubMed  Google Scholar 

  58. Schilling PL, Davis MM, Albanese CT, Dutta S, Morton J. National trends in adolescent bariatric surgical procedures and implications for surgical centers of excellence. J Am Coll Surg. 2008;206(1):1–12. doi:10.1016/j.jamcollsurg.2007.07.028.

    Article  PubMed  Google Scholar 

  59. Chidambaran V, Sadhasivam S, Diepstraten J, Esslinger H, Cox S, Schnell BM, et al. Evaluation of propofol anesthesia in morbidly obese children and adolescents. BMC Anesthesiol. 2013;13(1):8. doi:10.1186/1471-2253-13-8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Igarashi T, Nagata O, Iwakiri H, Ikeda M, Uezono S, Ozaki M. Two cases of intraoperative awareness during intravenous anesthesia with propofol in morbidly obese patients. Masui. 2002;51(11):1243–7.

    PubMed  Google Scholar 

  61. Olutoye OA, Yu X, Govindan K, Tjia IM, East DL, Spearman R, et al. The effect of obesity on the ED(95) of propofol for loss of consciousness in children and adolescents. Anesth Analg. 2012;115(1):147–53. doi:10.1213/ANE.0b013e318256858f.

    Article  CAS  PubMed  Google Scholar 

  62. Upton RN, Ludbrook GL, Grant C, Martinez AM. Cardiac output is a determinant of the initial concentrations of propofol after short-infusion administration. Anesth Analg. 1999;89(3):545–52.

    CAS  PubMed  Google Scholar 

  63. Ingrande J, Brodsky JB, Lemmens HJ. Lean body weight scalar for the anesthetic induction dose of propofol in morbidly obese subjects. Anesth Analg. 2011;113(1):57–62. doi:10.1213/ANE.0b013e3181f6d9c0.

    Article  CAS  PubMed  Google Scholar 

  64. Lemmens HJ, Ingrande J. Pharmacology and obesity. Int Anesthesiol Clin. 2013;51(3):52–66. doi:10.1097/AIA.0b013e31829a4d56.

    Article  PubMed  Google Scholar 

  65. Cortinez LI, Anderson BJ, Penna A, Olivares L, Munoz HR, Holford NH, et al. Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth. 2010;105(4):448–56. doi:10.1093/bja/aeq195.

    Article  CAS  PubMed  Google Scholar 

  66. Diepstraten J, Chidambaran V, Sadhasivam S, Esslinger HR, Cox SL, Inge TH, et al. Propofol clearance in morbidly obese children and adolescents: influence of age and body size. Clin Pharmacokinet. 2012;51(8):543–51. doi:10.2165/11632940-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  67. van Kralingen S, Diepstraten J, Peeters MY, Deneer VH, van Ramshorst B, Wiezer RJ, et al. Population pharmacokinetics and pharmacodynamics of propofol in morbidly obese patients. Clin Pharmacokinet. 2011;50(11):739–50. doi:10.2165/11592890-000000000-00000.

    Article  PubMed  Google Scholar 

  68. Chidambaran V, Venkatasubramanian R, Sadhasivam S, Esslinger H, Cox S, Diepstraten J, et al. Population pharmacokinetic-pharmacodynamic modeling and dosing simulation of propofol maintenance anesthesia in severely obese adolescents. Paediatr Anaesth. 2015;. doi:10.1111/pan.12684.

    PubMed  Google Scholar 

  69. Diepstraten J, Chidambaran V, Sadhasivam S, Blusse van Oud-Alblas HJ, Inge T, van Ramshorst B, et al. An integrated population pharmacokinetic meta-analysis of propofol in morbidly obese and nonobese adults, adolescents, and children. CPT Pharmacometrics Syst Pharmacol. 2013;2:e73. doi:10.1038/psp.2013.47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Grossherr M, Hengstenberg A, Meier T, Dibbelt L, Igl BW, Ziegler A, et al. Propofol concentration in exhaled air and arterial plasma in mechanically ventilated patients undergoing cardiac surgery. Br J Anaesth. 2009;102(5):608–13. doi:10.1093/bja/aep053.

    Article  CAS  PubMed  Google Scholar 

  71. Perl T, Carstens E, Hirn A, Quintel M, Vautz W, Nolte J, et al. Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br J Anaesth. 2009;103(6):822–7. doi:10.1093/bja/aep312.

    Article  CAS  PubMed  Google Scholar 

  72. Anderson BJ, Hodkinson B. Are there still limitations for the use of target-controlled infusion in children? Curr Opin Anaesthesiol. 2010;23(3):356–62. doi:10.1097/ACO.0b013e32833938db.

    Article  PubMed  Google Scholar 

  73. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  74. Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg. 1987;66(12):1256–63.

    Article  CAS  PubMed  Google Scholar 

  75. Absalom A, Amutike D, Lal A, White M, Kenny GN. Accuracy of the ‘Paedfusor’ in children undergoing cardiac surgery or catheterization. Br J Anaesth. 2003;91(4):507–13.

    Article  CAS  PubMed  Google Scholar 

  76. Coppens MJ, Eleveld DJ, Proost JH, Marks LA, Van Bocxlaer JF, Vereecke H, et al. An evaluation of using population pharmacokinetic models to estimate pharmacodynamic parameters for propofol and bispectral index in children. Anesthesiology. 2011;115(1):83–93. doi:10.1097/ALN.0b013e31821a8d80.

    Article  CAS  PubMed  Google Scholar 

  77. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, et al. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88(5):1170–82.

    Article  CAS  PubMed  Google Scholar 

  78. Iwakiri H, Nishihara N, Nagata O, Matsukawa T, Ozaki M, Sessler DI. Individual effect-site concentrations of propofol are similar at loss of consciousness and at awakening. Anesth Analg. 2005;100(1):107–10. doi:10.1213/01.ANE.0000139358.15909.EA.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. McCormack J, Mehta D, Peiris K, Dumont G, Fung P, Lim J, et al. The effect of a target controlled infusion of propofol on predictability of recovery from anesthesia in children. Paediatr Anaesth. 2010;20(1):56–62. doi:10.1111/j.1460-9592.2009.03196.x.

    Article  PubMed  Google Scholar 

  80. Vuyk J, Mertens MJ, Olofsen E, Burm AG, Bovill JG. Propofol anesthesia and rational opioid selection: determination of optimal EC50-EC95 propofol-opioid concentrations that assure adequate anesthesia and a rapid return of consciousness. Anesthesiology. 1997;87(6):1549–62.

    Article  CAS  PubMed  Google Scholar 

  81. van Heusden K, Ansermino JM, Soltesz K, Khosravi S, West N, Dumont GA. Quantification of the variability in response to propofol administration in children. IEEE Trans Biomed Eng. 2013;60(9):2521–9. doi:10.1109/TBME.2013.2259592.

    Article  PubMed  Google Scholar 

  82. Reves JG, Glass P, Lubarsky DA. Intravenous anesthestics. Miller’s anesthesia. 7th ed. Philadelphia: Churchill Livingstone; 2010.

  83. Robinson BJ, Ebert TJ, OBrien TJ, Colinco MD, Muzi M. Mechanisms whereby propofol mediates peripheral vasodilation in humans: sympathoinhibition or direct vascular relaxation? Anesthesiology. 1997;86(1):64–72. doi:10.1097/00000542-199701000-00010.

    Article  CAS  PubMed  Google Scholar 

  84. Vuyk J, Sitsen E, Reekers M. Intravenous anesthestics. Miller’s. 8th ed. Philadelphia: Elsevier; 2014.

  85. Williams GD, Jones TK, Hanson KA, Morray JP. The hemodynamic effects of propofol in children with congenital heart disease. Anesth Analg. 1999;89(6):1411–6.

    CAS  PubMed  Google Scholar 

  86. Cullen PM, Turtle M, Prys-Roberts C, Way WL, Dye J. Effect of propofol anesthesia on baroreflex activity in humans. Anesth Analg. 1987;66(11):1115–20.

    Article  CAS  PubMed  Google Scholar 

  87. Liu Q, Kong AL, Chen R, Qian C, Liu SW, Sun BG, et al. Propofol and arrhythmias: two sides of the coin. Acta Pharmacol Sinica. 2011;32(6):817–23. doi:10.1038/aps.2011.42.

    Article  CAS  Google Scholar 

  88. Szabo EZ, Luginbuehl I, Bissonnette B. Impact of anesthetic agents on cerebrovascular physiology in children. Paediatr Aaesth. 2009;19(2):108–18. doi:10.1111/j.1460-9592.2008.02826.x.

    Article  Google Scholar 

  89. Karsli C, Luginbuehl I, Farrar M, Bissonnette B. Propofol decreases cerebral blood flow velocity in anesthetized children. Can J Anaesth. 2002;49(8):830–4. doi:10.1007/BF03017417.

    Article  PubMed  Google Scholar 

  90. Matta BF, Lam AM, Strebel S, Mayberg TS. Cerebral pressure autoregulation and carbon dioxide reactivity during propofol-induced EEG suppression. Br J Anaesth. 1995;74(2):159–63.

    Article  CAS  PubMed  Google Scholar 

  91. Noterman J, Berre J, Vandesteene A, Brotchi J. Monitoring of intracranial pressure during the postoperative period of aneurysms. Neurochirurgie. 1988;34(3):161–3.

    CAS  PubMed  Google Scholar 

  92. Bacon RC, Razis PA. The effect of propofol sedation in pregnancy on neonatal condition. Anaesthesia. 1994;49(12):1058–60.

    Article  CAS  PubMed  Google Scholar 

  93. Lanigan C, Sury M, Bingham R, Howard R, Mackersie A. Neurological sequelae in children after prolonged propofol infusion. Anaesthesia. 1992;47(9):810–1.

    Article  CAS  PubMed  Google Scholar 

  94. Trotter C, Serpell MG. Neurological sequelae in children after prolonged propofol infusion. Anaesthesia. 1992;47(4):340–2.

    Article  CAS  PubMed  Google Scholar 

  95. Bendiksen A, Larsen LM. Convulsions, ataxia and hallucinations following propofol. Acta Anaesthesiol Scand. 1998;42(6):739–41.

    Article  CAS  PubMed  Google Scholar 

  96. Macrae D, James IG. Propofol sedation of children. Anaesthesia. 1992;47(9):811.

    Article  CAS  PubMed  Google Scholar 

  97. Fredriksson A, Ponten E, Gordh T, Eriksson P. Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology. 2007;107(3):427–36. doi:10.1097/01.anes.0000278892.62305.9c.

    Article  CAS  PubMed  Google Scholar 

  98. Loepke AW, McGowan FX Jr, Soriano SG. CON: the toxic effects of anesthetics in the developing brain: the clinical perspective. Anesth Analg. 2008;106(6):1664–9. doi:10.1213/ane.0b013e3181733ef8.

    Article  PubMed  Google Scholar 

  99. Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg. 2008;106(6):1681–707. doi:10.1213/ane.0b013e318167ad77.

    Article  PubMed  Google Scholar 

  100. Ergun R, Akdemir G, Sen S, Tasci A, Ergungor F. Neuroprotective effects of propofol following global cerebral ischemia in rats. Neurosurg Rev. 2002;25(1–2):95–8.

    Article  PubMed  Google Scholar 

  101. Bayona NA, Gelb AW, Jiang Z, Wilson JX, Urquhart BL, Cechetto DF. Propofol neuroprotection in cerebral ischemia and its effects on low-molecular-weight antioxidants and skilled motor tasks. Anesthesiology. 2004;100(5):1151–9.

    Article  CAS  PubMed  Google Scholar 

  102. Engelhard K, Werner C, Eberspacher E, Pape M, Stegemann U, Kellermann K, et al. Influence of propofol on neuronal damage and apoptotic factors after incomplete cerebral ischemia and reperfusion in rats: a long-term observation. Anesthesiology. 2004;101(4):912–7.

    Article  CAS  PubMed  Google Scholar 

  103. San-juan D, Chiappa KH, Cole AJ. Propofol and the electroencephalogram. Clin Neurophysiol. 2010;121(7):998–1006. doi:10.1016/j.clinph.2009.12.016.

    Article  CAS  PubMed  Google Scholar 

  104. Devlin VJ, Schwartz DM. Intraoperative neurophysiologic monitoring during spinal surgery. J Am Acad Orthopaed Surg. 2007;15(9):549–60.

    Google Scholar 

  105. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):430–43.

    Article  PubMed  Google Scholar 

  106. Fung NY, Hu Y, Irwin MG, Chow BE, Yuen MY. Comparison between sevoflurane/remifentanil and propofol/remifentanil anaesthesia in providing conditions for somatosensory evoked potential monitoring during scoliosis corrective surgery. Anaesth Intensive Care. 2008;36(6):779–85.

    CAS  PubMed  Google Scholar 

  107. Wang AC, Than KD, Etame AB, La Marca F, Park P. Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: a review of the literature. Neurosurg Focus. 2009;27(4):E7. doi:10.3171/2009.8.FOCUS09145.

    Article  PubMed  Google Scholar 

  108. Dahan A, Nieuwenhuijs DJ, Olofsen E. Influence of propofol on the control of breathing. Adv Exp Med Biol. 2003;523:81–92.

    Article  CAS  PubMed  Google Scholar 

  109. Goodman NW, Black AM, Carter JA. Some ventilatory effects of propofol as sole anaesthetic agent. Br J Anaesth. 1987;59(12):1497–503.

    Article  CAS  PubMed  Google Scholar 

  110. Jonsson MM, Lindahl SG, Eriksson LI. Effect of propofol on carotid body chemosensitivity and cholinergic chemotransduction. Anesthesiology. 2005;102(1):110–6.

    Article  CAS  PubMed  Google Scholar 

  111. Eastwood PR, Platt PR, Shepherd K, Maddison K, Hillman DR. Collapsibility of the upper airway at different concentrations of propofol anesthesia. Anesthesiology. 2005;103(3):470–7.

    Article  CAS  PubMed  Google Scholar 

  112. Nakayama M, Murray PA. Ketamine preserves and propofol potentiates hypoxic pulmonary vasoconstriction compared with the conscious state in chronically instrumented dogs. Anesthesiology. 1999;91(3):760–71.

    Article  CAS  PubMed  Google Scholar 

  113. Nishiyama T, Hanaoka K. Propofol-induced bronchoconstriction: two case reports. Anesth Analg. 2001;93(3):645–6.

    Article  CAS  PubMed  Google Scholar 

  114. Rigby-Jones AE, Sneyd JR. Propofol and children: what we know and what we do not know. Paediatr Anaesth. 2011;21(3):247–54. doi:10.1111/j.1460-9592.2010.03454.x.

    Article  PubMed  Google Scholar 

  115. Steur RJ, Perez RS, De Lange JJ. Dosage scheme for propofol in children under 3 years of age. Paediatr Anaesth. 2004;14(6):462–7. doi:10.1111/j.1460-9592.2004.01238.x.

    Article  CAS  PubMed  Google Scholar 

  116. Wheeler DS, Vaux KK, Ponaman ML, Poss BW. The safe and effective use of propofol sedation in children undergoing diagnostic and therapeutic procedures: experience in a pediatric ICU and a review of the literature. Pediatr Emerg Care. 2003;19(6):385–92.

    Article  PubMed  Google Scholar 

  117. Malherbe S, Whyte S, Singh P, Amari E, King A, Ansermino JM. Total intravenous anesthesia and spontaneous respiration for airway endoscopy in children—a prospective evaluation. Paediatr Anaesth. 2010;20(5):434–8. doi:10.1111/j.1460-9592.2010.03290.x.

    Article  PubMed  Google Scholar 

  118. Koroglu A, Teksan H, Sagir O, Yucel A, Toprak HI, Ersoy OM. A comparison of the sedative, hemodynamic, and respiratory effects of dexmedetomidine and propofol in children undergoing magnetic resonance imaging. Anesthes Analg. 2006;103(1):63–7. doi:10.1213/01.ANE.0000219592.82598.AA.

    Article  CAS  Google Scholar 

  119. Wu J, Mahmoud M, Schmitt M, Hossain M, Kurth D. Comparison of propofol and dexmedetomedine techniques in children undergoing magnetic resonance imaging. Paediatr Anaesth. 2014;24(8):813–8. doi:10.1111/pan.12408.

    Article  PubMed  Google Scholar 

  120. Mahmoud M, Jung D, Salisbury S, McAuliffe J, Gunter J, Patio M, et al. Effect of increasing depth of dexmedetomidine and propofol anesthesia on upper airway morphology in children and adolescents with obstructive sleep apnea. J Clin Anesth. 2013;25(7):529–41. doi:10.1016/j.jclinane.2013.04.011.

    Article  CAS  PubMed  Google Scholar 

  121. Cravero JP, Beach ML, Blike GT, Gallagher SM, Hertzog JH, Pediatric Sedation Research Consortium. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesthes Analg. 2009;108(3):795–804. doi:10.1213/ane.0b013e31818fc334.

    Article  CAS  Google Scholar 

  122. Kamat PP, McCracken CE, Gillespie SE, Fortenberry JD, Stockwell JA, Cravero JP, et al. Pediatric critical care physician-administered procedural sedation using propofol: a report from the Pediatric Sedation Research Consortium Database. Pediatr Crit Care Med. 2015;16(1):11–20. doi:10.1097/PCC.0000000000000273.

    Article  PubMed  Google Scholar 

  123. Mallory MD, Baxter AL, Yanosky DJ, Cravero JP, Pediatric Sedation Research Consortium. Emergency physician-administered propofol sedation: a report on 25,433 sedations from the pediatric sedation research consortium. Ann Emerg Med. 2011;57(5):462–8 e1. doi:10.1016/j.annemergmed.2011.03.008.

  124. Devlin JW, Lau AK, Tanios MA. Propofol-associated hypertriglyceridemia and pancreatitis in the intensive care unit: an analysis of frequency and risk factors. Pharmacotherapy. 2005;25(10):1348–52. doi:10.1592/phco.2005.25.10.1348.

    Article  CAS  PubMed  Google Scholar 

  125. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8(6):491–9.

    Article  CAS  PubMed  Google Scholar 

  126. Hermanns H, Lipfert P, Ladda S, Stevens MF. Propofol infusion syndrome during anaesthesia for scoliosis surgery in an adolescent with neonatal progeroid syndrome. Acta Anaesthesiol Scand. 2006;50(3):392–4. doi:10.1111/j.1399-6576.2006.00917.x.

    Article  CAS  PubMed  Google Scholar 

  127. Lerman J. Surgical and patient factors involved in postoperative nausea and vomiting. Br J Anaesth. 1992;69(7 Suppl 1):24S–32S.

    Article  CAS  PubMed  Google Scholar 

  128. Gan TJ, Glass PS, Howell ST, Canada AT, Grant AP, Ginsberg B. Determination of plasma concentrations of propofol associated with 50% reduction in postoperative nausea. Anesthesiology. 1997;87(4):779–84.

    Article  CAS  PubMed  Google Scholar 

  129. Erdem AF, Yoruk O, Alici HA, Cesur M, Atalay C, Altas E, et al. Subhypnotic propofol infusion plus dexamethasone is more effective than dexamethasone alone for the prevention of vomiting in children after tonsillectomy. Paediatr Anaesth. 2008;18(9):878–83. doi:10.1111/j.1460-9592.2008.02675.x.

    Article  PubMed  Google Scholar 

  130. Erdem AF, Yoruk O, Silbir F, Alici HA, Cesur M, Dogan N, et al. Tropisetron plus subhypnotic propofol infusion is more effective than tropisetron alone for the prevention of vomiting in children after tonsillectomy. Anaesth Intensive Care. 2009;37(1):54–9.

    CAS  PubMed  Google Scholar 

  131. Unlugenc H, Guler T, Gunes Y, Isik G. Comparative study of the antiemetic efficacy of ondansetron, propofol and midazolam in the early postoperative period. Eur J Anaesthesiol. 2004;21(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  132. Apfel CC, Korttila K, Abdalla M, Kerger H, Turan A, Vedder I, et al. A factorial trial of six interventions for the prevention of postoperative nausea and vomiting. N Engl J Med. 2004;350(24):2441–51. doi:10.1056/NEJMoa032196.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Tramer M, Moore A, McQuay H. Meta-analytic comparison of prophylactic antiemetic efficacy for postoperative nausea and vomiting: propofol anaesthesia vs omitting nitrous oxide vs total i.v. anaesthesia with propofol. Br J Anaesth. 1997;78(3):256–9.

    Article  CAS  PubMed  Google Scholar 

  134. Tramer M, Moore A, McQuay H. Propofol anaesthesia and postoperative nausea and vomiting: quantitative systematic review of randomized controlled studies. Br J Anaesth. 1997;78(3):247–55.

    Article  CAS  PubMed  Google Scholar 

  135. Gan TJ, Diemunsch P, Habib AS, Kovac A, Kranke P, Meyer TA, et al. Consensus guidelines for the management of postoperative nausea and vomiting. Anesth Analg. 2014;118(1):85–113. doi:10.1213/ANE.0000000000000002.

    Article  PubMed  Google Scholar 

  136. Olympio MA. Postanesthetic delirium: historical perspectives. J Clin Anesth. 1991;3(1):60–3.

    Article  CAS  PubMed  Google Scholar 

  137. Kain ZN, Caldwell-Andrews AA, Maranets I, McClain B, Gaal D, Mayes LC et al. Preoperative anxiety and emergence delirium and postoperative maladaptive behaviors. Anesth Analg. 2004;99(6):1648–54. doi:10.1213/01.ANE.0000136471.36680.97.

  138. Chandler JR, Myers D, Mehta D, Whyte E, Groberman MK, Montgomery CJ, et al. Emergence delirium in children: a randomized trial to compare total intravenous anesthesia with propofol and remifentanil to inhalational sevoflurane anesthesia. Paediatr Anaesth. 2013;23(4):309–15. doi:10.1111/pan.12090.

    Article  PubMed  Google Scholar 

  139. Abu-Shahwan I. Effect of propofol on emergence behavior in children after sevoflurane general anesthesia. Paediatr Anaesth. 2008;18(1):55–9. doi:10.1111/j.1460-9592.2007.02376.x.

    PubMed  Google Scholar 

  140. Cameron E, Johnston G, Crofts S, Morton NS. The minimum effective dose of lignocaine to prevent injection pain due to propofol in children. Anaesthesia. 1992;47(7):604–6.

    Article  CAS  PubMed  Google Scholar 

  141. Picard P, Tramer MR. Prevention of pain on injection with propofol: a quantitative systematic review. Anesth Analg. 2000;90(4):963–9.

    Article  CAS  PubMed  Google Scholar 

  142. Jalota L, Kalira V, George E, Shi YY, Hornuss C, Radke O, et al. Prevention of pain on injection of propofol: systematic review and meta-analysis. BMJ. 2011;342:d1110. doi:10.1136/bmj.d1110.

    Article  PubMed  CAS  Google Scholar 

  143. Briggs LP, Clarke RS, Dundee JW, Moore J, Bahar M, Wright PJ. Use of di-isopropyl phenol as main agent for short procedures. Br J Anaesth. 1981;53(11):1197–202.

    Article  CAS  PubMed  Google Scholar 

  144. Hannallah RS, Baker SB, Casey W, McGill WA, Broadman LM, Norden JM. Propofol: effective dose and induction characteristics in unpremedicated children. Anesthesiology. 1991;74(2):217–9.

    Article  CAS  PubMed  Google Scholar 

  145. Scott RP, Saunders DA, Norman J. Propofol: clinical strategies for preventing the pain of injection. Anaesthesia. 1988;43(6):492–4.

    Article  CAS  PubMed  Google Scholar 

  146. Stark RD, Binks SM, Dutka VN, O’Connor KM, Arnstein MJ, Glen JB. A review of the safety and tolerance of propofol (‘Diprivan’). Postgrad Med J. 1985;61(Suppl 3):152–6.

    PubMed  Google Scholar 

  147. Klement W, Arndt JO. Pain on injection of propofol: effects of concentration and diluent. Br J Anaesth. 1991;67(3):281–4.

    Article  CAS  PubMed  Google Scholar 

  148. Doenicke AW, Roizen MF, Rau J, Kellermann W, Babl J. Reducing pain during propofol injection: the role of the solvent. Anesth Analg. 1996;82(3):472–4.

    CAS  PubMed  Google Scholar 

  149. Nakane M, Iwama H. A potential mechanism of propofol-induced pain on injection based on studies using nafamostat mesilate. Br J Anaesth. 1999;83(3):397–404.

    Article  CAS  PubMed  Google Scholar 

  150. Stokes DN, Robson N, Hutton P. Effect of diluting propofol on the incidence of pain on injection and venous sequelae. Br J Anaesth. 1989;62(2):202–3.

    Article  CAS  PubMed  Google Scholar 

  151. McCrirrick A, Hunter S. Pain on injection of propofol: the effect of injectate temperature. Anaesthesia. 1990;45(6):443–4.

    Article  CAS  PubMed  Google Scholar 

  152. Barker P, Langton JA, Murphy P, Rowbotham DJ. Effect of prior administration of cold saline on pain during propofol injection: a comparison with cold propofol and propofol with lignocaine. Anaesthesia. 1991;46(12):1069–70.

    Article  CAS  PubMed  Google Scholar 

  153. Fletcher GC, Gillespie JA, Davidson JA. The effect of temperature upon pain during injection of propofol. Anaesthesia. 1996;51(5):498–9.

    Article  CAS  PubMed  Google Scholar 

  154. Valtonen M, Iisalo E, Kanto J, Tikkanen J. Comparison between propofol and thiopentone for induction of anaesthesia in children. Anaesthesia. 1988;43(8):696–9.

    Article  CAS  PubMed  Google Scholar 

  155. McCulloch MJ, Lees NW. Assessment and modification of pain on induction with propofol (Diprivan). Anaesthesia. 1985;40(11):1117–20.

    Article  CAS  PubMed  Google Scholar 

  156. Nicol ME, Moriarty J, Edwards J, Robbie DS, A’Hern RP. Modification of pain on injection of propofol: a comparison between lignocaine and procaine. Anaesthesia. 1991;46(1):67–9.

    Article  CAS  PubMed  Google Scholar 

  157. Tan CH, Onsiong MK. Pain on injection of propofol. Anaesthesia. 1998;53(5):468–76.

    Article  CAS  PubMed  Google Scholar 

  158. Nyman Y, von Hofsten K, Georgiadi A, Eksborg S, Lonnqvist PA. Propofol injection pain in children: a prospective randomized double-blind trial of a new propofol formulation versus propofol with added lidocaine. Br J Anaesth. 2005;95(2):222–5. doi:10.1093/bja/aei156.

    Article  CAS  PubMed  Google Scholar 

  159. Rochette A, Hocquet AF, Dadure C, Boufroukh D, Raux O, Lubrano JF, et al. Avoiding propofol injection pain in children: a prospective, randomized, double-blinded, placebo-controlled study. Br J Anaesth. 2008;101(3):390–4. doi:10.1093/bja/aen169.

    Article  CAS  PubMed  Google Scholar 

  160. Varghese E, Krishna HM, Nittala A. Does the newer preparation of propofol, an emulsion of medium/long chain triglycerides cause less injection pain in children when premixed with lignocaine? Paediatr Anaesth. 2010;20(4):338–42. doi:10.1111/j.1460-9592.2010.03272.x.

    Article  PubMed  Google Scholar 

  161. Shenoi AN, Fortenberry JD, Kamat P. Accidental intra-arterial injection of propofol. Pediatr Emergency Care. 2014;30(2):136. doi:10.1097/PEC.0000000000000071.

    Article  Google Scholar 

  162. Ang BL. Prolonged cutaneous sequelae after intra-arterial injection of propofol. Singapore Med J. 1998;39(3):124–6.

    CAS  PubMed  Google Scholar 

  163. Hepner DL, Castells MC. Anaphylaxis during the perioperative period. Anesth Analg. 2003;97(5):1381–95.

    Article  PubMed  Google Scholar 

  164. Savage JH, Kaeding AJ, Matsui EC, Wood RA. The natural history of soy allergy. J Allergy Clin Immunol. 2010;125(3):683–6. doi:10.1016/j.jaci.2009.12.994.

    Article  CAS  PubMed  Google Scholar 

  165. Gangineni K, Scase AE, Fearn J. Propofol and peanut allergy. Anaesthesia. 2007;62(11):1191. doi:10.1111/j.1365-2044.2007.05337.x.

    Article  CAS  PubMed  Google Scholar 

  166. Bradley AE, Tober KE, Brown RE. Use of propofol in patients with food allergies. Anaesthesia. 2008;63(4):439. doi:10.1111/j.1365-2044.2008.05505.x.

    Article  CAS  PubMed  Google Scholar 

  167. Ring J. Allergy in practice. Berlin: Springer; 2005.

    Google Scholar 

  168. Lizaso BMTL, Sainz SA, Puebla AMJ. Cutaneous response to Diprivan (propofol) and Intralipid in patients with leguminous and egg allergy. Rev Esp Alergol Immunol Clin. 1998;13:153–7.

    Google Scholar 

  169. Murphy A, Campbell DE, Baines D, Mehr S. Allergic reactions to propofol in egg-allergic children. Anesth Analg. 2011;113(1):140–4. doi:10.1213/ANE.0b013e31821b450f.

    Article  CAS  PubMed  Google Scholar 

  170. de Leon-Casasola OA, Weiss A, Lema MJ. Anaphylaxis due to propofol. Anesthesiology. 1992;77(2):384–6.

    Article  PubMed  Google Scholar 

  171. Rigoulet M, Devin A, Averet N, Vandais B, Guerin B. Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the general anesthetic 2,6-diisopropylphenol. Eur J Biochem. 1996;241(1):280–5.

    Article  CAS  PubMed  Google Scholar 

  172. Wallace JJ, Perndt H, Skinner M. Anaesthesia and mitochondrial disease. Paediatr Anaesth. 1998;8(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  173. Branca D, Roberti MS, Vincenti E, Scutari G. Uncoupling effect of the general anesthetic 2,6-diisopropylphenol in isolated rat liver mitochondria. ArchBiochem Biophysics. 1991;290(2):517–21.

    Article  CAS  Google Scholar 

  174. Bains R, Moe MC, Vinje ML, Berg-Johnsen J. Sevoflurane and propofol depolarize mitochondria in rat and human cerebrocortical synaptosomes by different mechanisms. Acta Anaesthesiol Scand. 2009;53(10):1354–60. doi:10.1111/j.1399-6576.2009.02047.x.

    Article  CAS  PubMed  Google Scholar 

  175. Mehta N, DeMunter C, Habibi P, Nadel S, Britto J. Short-term propofol infusions in children. Lancet. 1999;354(9181):866–7. doi:10.1016/S0140-6736(05)75936-5.

    Article  CAS  PubMed  Google Scholar 

  176. Vanlander AV, Okun JG, de Jaeger A, Smet J, De Latter E, De Paepe B, et al. Possible pathogenic mechanism of propofol infusion syndrome involves coenzyme q. Anesthesiology. 2015;122(2):343–52. doi:10.1097/ALN.0000000000000484.

    Article  CAS  PubMed  Google Scholar 

  177. Muravchick S, Levy RJ. Clinical implications of mitochondrial dysfunction. Anesthesiology. 2006;105(4):819–37.

    Article  CAS  PubMed  Google Scholar 

  178. Driessen J, Willems S, Dercksen S, Giele J, van der Staak F, Smeitink J. Anesthesia-related morbidity and mortality after surgery for muscle biopsy in children with mitochondrial defects. Paediatr Anaesth. 2007;17(1):16–21. doi:10.1111/j.1460-9592.2006.02043.x.

    Article  PubMed  Google Scholar 

  179. Niezgoda J, Morgan PG. Anesthetic considerations in patients with mitochondrial defects. Paediatr Anaesth. 2013;23(9):785–93. doi:10.1111/pan.12158.

    Article  PubMed Central  PubMed  Google Scholar 

  180. Farag E, Deboer G, Cohen BH, Niezgoda J. Metabolic acidosis due to propofol infusion. Anesthesiology. 2005;102(3):697–8.

  181. Parke TJ, Stevens JE, Rice AS, Greenaway CL, Bray RJ, Smith PJ, et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. BMJ. 1992;305(6854):613–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. Vernooy K, Delhaas T, Cremer OL, Di Diego JM, Oliva A, Timmermans C, et al. Electrocardiographic changes predicting sudden death in propofol-related infusion syndrome. Heart Rhythm. 2006;3(2):131–7. doi:10.1016/j.hrthm.2005.11.005.

    Article  PubMed Central  PubMed  Google Scholar 

  183. Felmet K, Nguyen T, Clark RS, Orr D, Carcillo J. The FDA warning against prolonged sedation with propofol in children remains warranted. Pediatrics. 2003;112(4):1002–3 (author reply-3).

  184. Cornfield DN, Tegtmeyer K, Nelson MD, Milla CE, Sweeney M. Continuous propofol infusion in 142 critically ill children. Pediatrics. 2002;110(6):1177–81.

    Article  PubMed  Google Scholar 

  185. Fong JJ, Sylvia L, Ruthazer R, Schumaker G, Kcomt M, Devlin JW. Predictors of mortality in patients with suspected propofol infusion syndrome. Critical Care Med. 2008;36(8):2281–7. doi:10.1097/CCM.0b013e318180c1eb.

    Article  CAS  Google Scholar 

  186. Diaz JH, Prabhakar A, Urman RD, Kaye AD. Propofol infusion syndrome: a retrospective analysis at a level 1 trauma center. Critical Care Res Pract. 2014;2014:346968. doi:10.1155/2014/346968.

    Google Scholar 

  187. Vasile B, Rasulo F, Candiani A, Latronico N. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med. 2003;29(9):1417–25. doi:10.1007/s00134-003-1905-x.

    Article  PubMed  Google Scholar 

  188. Holzki J, Aring C, Gillor A. Death after re-exposure to propofol in a 3-year-old child: a case report. Paediatr Anaesth. 2004;14(3):265–70.

    Article  PubMed  Google Scholar 

  189. Fudickar A, Bein B, Tonner PH. Propofol infusion syndrome in anaesthesia and intensive care medicine. Curr Opin Anaesthesiol. 2006;19(4):404–10. doi:10.1097/01.aco.0000236140.08228.f1.

    Article  PubMed  Google Scholar 

  190. Culp KE, Augoustides JG, Ochroch AE, Milas BL. Clinical management of cardiogenic shock associated with prolonged propofol infusion. Anesth Analg. 2004;99(1):221–6.

    Article  PubMed  Google Scholar 

  191. Crawford MW, Dodgson BG, Holtby HH, Roy WL. Propofol syndrome in children. CMAJ = journal de l’Association medicale canadienne. 2003;168(6):669.

  192. Koriyama H, Duff JP, Guerra GG, Chan AW, Sedation W, Analgesia T. Is propofol a friend or a foe of the pediatric intensivist? Description of propofol use in a PICU*. Pediatr Crit Care Med. 2014;15(2):e66–71. doi:10.1097/PCC.0000000000000021.

    Article  PubMed  Google Scholar 

  193. Fodale V, La Monaca E. Propofol infusion syndrome: an overview of a perplexing disease. Drug Saf. 2008;31(4):293–303.

    Article  CAS  PubMed  Google Scholar 

  194. Wolf A, Weir P, Segar P, Stone J, Shield J. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet. 2001;357(9256):606–7. doi:10.1016/S0140-6736(00)04064-2.

    Article  CAS  PubMed  Google Scholar 

  195. Orser BA, Bertlik M, Wang LY, MacDonald JF. Inhibition by propofol (2,6 di-isopropylphenol) of the N-methyl-d-aspartate subtype of glutamate receptor in cultured hippocampal neurones. Br J Pharmacol. 1995;116(2):1761–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Kingston S, Mao L, Yang L, Arora A, Fibuch EE, Wang JQ. Propofol inhibits phosphorylation of N-methyl-d-aspartate receptor NR1 subunits in neurons. Anesthesiology. 2006;104(4):763–9.

    Article  CAS  PubMed  Google Scholar 

  197. Anker-Moller E, Spangsberg N, Arendt-Nielsen L, Schultz P, Kristensen MS, Bjerring P. Subhypnotic doses of thiopentone and propofol cause analgesia to experimentally induced acute pain. Br J Anaesth. 1991;66(2):185–8.

    Article  CAS  PubMed  Google Scholar 

  198. Merrill AW, Barter LS, Rudolph U, Eger EI, 2nd, Antognini JF, Carstens MI, et al. Propofol’s effects on nociceptive behavior and spinal c-fos expression after intraplantar formalin injection in mice with a mutation in the gamma-aminobutyric acid-type(A) receptor beta3 subunit. Anesth Analg. 2006;103(2):478–83. doi: 10.1213/01.ane.0000223847.50233.1b.

  199. Frolich MA, Price DD, Robinson ME, Shuster JJ, Theriaque DW, Heft MW. The effect of propofol on thermal pain perception. Anesth Analg. 2005;100(2):481–6. doi:10.1213/01.ANE.0000142125.61206.7A.

    Article  PubMed  Google Scholar 

  200. Cheng SS, Yeh J, Flood P. Anesthesia matters: patients anesthetized with propofol have less postoperative pain than those anesthetized with isoflurane. Anesth Analg. 2008;106(1):264–9. doi:10.1213/01.ane.0000287653.77372.d9.

  201. Tan T, Bhinder R, Carey M, Briggs L. Day-surgery patients anesthetized with propofol have less postoperative pain than those anesthetized with sevoflurane. Anesth Analg. 2010;111(1):83–5. doi:10.1213/ANE.0b013e3181c0ee9e.

    CAS  PubMed  Google Scholar 

  202. Fassoulaki A, Melemeni A, Paraskeva A, Siafaka I, Sarantopoulos C. Postoperative pain and analgesic requirements after anesthesia with sevoflurane, desflurane or propofol. Anesth Analg. 2008;107(5):1715–9. doi:10.1213/ane.0b013e318182d84e.

    Article  CAS  PubMed  Google Scholar 

  203. Boccara G, Mann C, Pouzeratte Y, Bellavoir A, Rouvier A, Colson P. Improved postoperative analgesia with isoflurane than with propofol anaesthesia. Can J Anaesth. 1998;45(9):839–42. doi:10.1007/BF03012216.

    Article  CAS  PubMed  Google Scholar 

  204. Singler B, Troster A, Manering N, Schuttler J, Koppert W. Modulation of remifentanil-induced postinfusion hyperalgesia by propofol. Anesth Analg. 2007;104(6):1397–403. doi:10.1213/01.ane.0000261305.22324.f3.

  205. Bandschapp O, Filitz J, Ihmsen H, Berset A, Urwyler A, Koppert W, et al. Analgesic and antihyperalgesic properties of propofol in a human pain model. Anesthesiology. 2010;113(2):421–8. doi:10.1097/ALN.0b013e3181e33ac8.

    Article  CAS  PubMed  Google Scholar 

  206. Hasani A, Gecaj-Gashi A, Llullaku S, Jashari H. Postoperative analgesia in children after propofol versus sevoflurane anesthesia. Pain Med. 2013;14(3):442–6. doi:10.1111/pme.12031.

    Article  PubMed  Google Scholar 

  207. Wang QY, Cao JL, Zeng YM, Dai TJ. GABAA receptor partially mediated propofol-induced hyperalgesia at superspinal level and analgesia at spinal cord level in rats. Acta Pharmacol Sinica. 2004;25(12):1619–25.

    CAS  Google Scholar 

  208. Bercker S, Bert B, Bittigau P, Felderhoff-Muser U, Buhrer C, Ikonomidou C, et al. Neurodegeneration in newborn rats following propofol and sevoflurane anesthesia. Neurotoxicity Res. 2009;16(2):140–7. doi:10.1007/s12640-009-9063-8.

    Article  CAS  Google Scholar 

  209. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science. 1999;283(5398):70–4.

    Article  CAS  PubMed  Google Scholar 

  210. Cattano D, Young C, Straiko MM, Olney JW. Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth Analg. 2008;106(6):1712–4. doi:10.1213/ane.0b013e318172ba0a.

    Article  CAS  PubMed  Google Scholar 

  211. Creeley C, Dikranian K, Dissen G, Martin L, Olney J, Brambrink A. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth. 2013;110(Suppl 1):i29–38. doi:10.1093/bja/aet173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  212. Pearn ML, Hu Y, Niesman IR, Patel HH, Drummond JC, Roth DM, et al. Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology. 2012;116(2):352–61. doi:10.1097/ALN.0b013e318242a48c.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  213. Cortinez LI, De la Fuente N, Eleveld DJ, Oliveros A, Crovari F, Sepulveda P, et al. Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis. Anesth Analg. 2014;119(2):302–10. doi:10.1213/ANE.0000000000000317.

    Article  CAS  PubMed  Google Scholar 

  214. Eleveld DJ, Proost JH, Cortinez LI, Absalom AR, Struys MM. A general purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118(6):1221–37. doi:10.1213/ANE.0000000000000165.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidya Chidambaran.

Ethics declarations

Funding

Preparation of this manuscript was supported by the Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA. No financial support except departmental salary support for the authors VC, AC, and AD. The writing of the review article was also facilitated by protected research time supported by Eunice Kennedy Shriver National Institute Of Child Health and Human Development of the National Institutes of Health under award number K23HD082782 (PI: VC)

Conflicts of interest

All authors (VC, AC, and AD) listed in this manuscript have no conflicts of interest relevant to this article to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidambaran, V., Costandi, A. & D’Mello, A. Propofol: A Review of its Role in Pediatric Anesthesia and Sedation. CNS Drugs 29, 543–563 (2015). https://doi.org/10.1007/s40263-015-0259-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-015-0259-6

Keywords

Navigation