Skip to main content
Log in

Therapeutic Drug Monitoring of Beta-Lactams and Other Antibiotics in the Intensive Care Unit: Which Agents, Which Patients and Which Infections?

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Antibiotics are among the medications most frequently administered to the critically ill, a population with high levels of intra- and inter-individual pharmacokinetic variability. Our knowledge of the relationships among antibiotic dosing, exposure and clinical effect in this population has increased in recent decades. Therapeutic drug monitoring (TDM) of serum antibiotic concentrations is the most practical means of assessing adequate antibiotic exposure, though until recently, it has been underutilised for this end. Now TDM is becoming more widespread, particularly for the beta-lactam antibiotics, a class historically thought to have a wide therapeutic range. We review the basic requirements, indications, and targets for effective TDM of the glycopeptides, aminoglycosides, quinolones and beta-lactam antibiotics in the adult intensive-care setting, with a special focus on TDM of the beta-lactam antibiotics, the most widely used antibiotic class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1):1–12.

    Article  PubMed  Google Scholar 

  2. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43(13):925–42.

    Article  CAS  PubMed  Google Scholar 

  3. Muller AE, Punt N, Mouton JW. Optimal exposures of ceftazidime predict the probability of microbiological and clinical outcome in the treatment of nosocomial pneumonia. J Antimicrob Chemother. 2013;68(4):900–6.

    Article  CAS  PubMed  Google Scholar 

  4. Muller AE, Punt N, Mouton JW. Exposure to ceftobiprole is associated with microbiological eradication and clinical cure in patients with nosocomial pneumonia. Antimicrob Agents Chemother. 2014;58(5):2512–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31(4):345–51.

    Article  CAS  PubMed  Google Scholar 

  6. MacVane SH, Kuti JL, Nicolau DP. Clinical pharmacodynamics of antipseudomonal cephalosporins in patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2014;58(3):1359–64.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Huwyler T, Lenggenhager L, Abbas M, Ing Lorenzini K, Hughes S, Huttner B, et al. Cefepime plasma concentrations and clinical toxicity: a retrospective cohort study. Clin Microbiol Infect. 2017;23(7):454–9.

    Article  CAS  PubMed  Google Scholar 

  8. Huttner A, Von Dach E, Renzoni A, Huttner BD, Affaticati M, Pagani L, et al. Augmented renal clearance, low beta-lactam concentrations and clinical outcomes in the critically ill: an observational prospective cohort study. Int J Antimicrob Agents. 2015;45(4):385–92.

    Article  CAS  PubMed  Google Scholar 

  9. Menifield CE, Doty N, Fletcher A. Obesity in America. ABNF J. 2008;19(3):83–8.

    PubMed  Google Scholar 

  10. Obesity statistics (internet). http://www.health.govt.nz/nz-health-statistics/health-statistics-and-data-sets/obesity-statistics. Accessed 1 Oct 2017.

  11. Wong G, Brinkman A, Benefield RJ, Carlier M, De Waele JJ, El Helali N, et al. An international, multicentre survey of beta-lactam antibiotic therapeutic drug monitoring practice in intensive care units. J Antimicrob Chemother. 2014;69(5):1416–23.

    Article  CAS  PubMed  Google Scholar 

  12. Charmillon A, Novy E, Agrinier N, Leone M, Kimmoun A, Levy B, et al. The ANTIBIOPERF study: a nationwide cross-sectional survey about practices for beta-lactam administration and therapeutic drug monitoring among critically ill patients in France. Clin Microbiol Infect. 2016;22(7):625–31.

    Article  CAS  PubMed  Google Scholar 

  13. Griffith RS. Introduction to vancomycin. Rev Infect Dis. 1981;3(suppl):S200–4.

    Article  PubMed  Google Scholar 

  14. Elting LS, Rubenstein EB, Kurtin D, Rolston KV, Fangtang J, Martin CG, et al. Mississippi mud in the 1990s: risks and outcomes of vancomycin-associated toxicity in general oncology practice. Cancer. 1998;83(12):2597–607.

    Article  CAS  PubMed  Google Scholar 

  15. Wong-Beringer A, Joo J, Tse E, Beringer P. Vancomycin-associated nephrotoxicity: a critical appraisal of risk with high-dose therapy. Int J Antimicrob Agents. 2011;37(2):95–101.

    Article  CAS  PubMed  Google Scholar 

  16. Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother. 1990;25(4):679–87.

    Article  CAS  PubMed  Google Scholar 

  17. Kureishi A, Jewesson PJ, Rubinger M, Cole CD, Reece DE, Phillips GL, et al. Double-blind comparison of teicoplanin versus vancomycin in febrile neutropenic patients receiving concomitant tobramycin and piperacillin: effect on cyclosporin A-associated nephrotoxicity. Antimicrob Agents Chemother. 1991;35(11):2246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Menichetti F, Martino P, Bucaneve G, Gentile G, D’Antonio D, Liso V, et al. Effects of teicoplanin and those of vancomycin in initial empirical antibiotic regimen for febrile, neutropenic patients with hematologic malignancies. Gimema Infection Program. Antimicrob Agents Chemother. 1994;38(9):2041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Byrne CJ, Roberts JA, McWhinney B, Fennell JP, O’Byrne P, Deasy E, et al. Variability in trough total and unbound teicoplanin concentrations and achievement of therapeutic drug monitoring targets in adult patients with hematological malignancy. Antimicrob Agents Chemother. 2017;61(6):e02466-16.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wilson AP. Clinical pharmacokinetics of teicoplanin. Clin Pharmacokinet. 2000;39(3):167–83.

    Article  CAS  PubMed  Google Scholar 

  21. Lenggenhager L, Abbas M, Fankhauser C, Huttner B, Harbarth S, Huttner A. Emergence of Pseudomonas aeruginosa resistance in patients with imipenem therapeutic drug monitoring. In: 27th European congress on clinical microbiology and infection; 22–25 April 2017; Vienna, Austria.

  22. Mouton JW, den Hollander JG. Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother. 1994;38(5):931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mouton RP, Glerum JH, van Loenen AC. Relationship between antibiotic consumption and frequency of antibiotic resistance of four pathogens–a seven-year survey. J Antimicrob Chemother. 1976;2(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  24. Ambrose PG, Bhavnani SM, Owens RC Jr. Clinical pharmacodynamics of quinolones. Infect Dis Clin North Am. 2003;17(3):529–43.

    Article  PubMed  Google Scholar 

  25. Zinner SH, Lubenko IY, Gilbert D, Simmons K, Zhao X, Drlica K, et al. Emergence of resistant Streptococcus pneumoniae in an in vitro dynamic model that simulates moxifloxacin concentrations inside and outside the mutant selection window: related changes in susceptibility, resistance frequency and bacterial killing. J Antimicrob Chemother. 2003;52(4):616–22.

    Article  CAS  PubMed  Google Scholar 

  26. Goessens WH, Mouton JW, ten Kate MT, Bijl AJ, Ott A, Bakker-Woudenberg IA. Role of ceftazidime dose regimen on the selection of resistant Enterobacter cloacae in the intestinal flora of rats treated for an experimental pulmonary infection. J Antimicrob Chemother. 2007;59(3):507–16.

    Article  CAS  PubMed  Google Scholar 

  27. Ensom MH, Davis GA, Cropp CD, Ensom RJ. Clinical pharmacokinetics in the 21st century. Does the evidence support definitive outcomes? Clin Pharmacokinet. 1998;34(4):265–79.

    Article  CAS  PubMed  Google Scholar 

  28. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis. 2007;44(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  29. Mouton JW, Ambrose PG, Canton R, Drusano GL, Harbarth S, MacGowan A, et al. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist Updat. 2011;14(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  30. Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis. 1988;158(4):831–47.

    Article  CAS  PubMed  Google Scholar 

  31. USCAST. Aminoglycoside in vitro susceptibility, test interpretive criteria evaluations. 2016 21 July 2016. Report No.: USCAST 0002.

  32. Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl. 1990;74:63–70.

    CAS  PubMed  Google Scholar 

  33. Mouton JW, Punt N, Vinks AA. Concentration-effect relationship of ceftazidime explains why the time above the MIC is 40 percent for a static effect in vivo. Antimicrob Agents Chemother. 2007;51(9):3449–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rybak MJ. Pharmacodynamics: relation to antimicrobial resistance. Am J Infect Control. 2006;34(5 Suppl 1):S38–45 (discussion S64–73).

    Article  PubMed  Google Scholar 

  35. Cheah SE, Wang J, Nguyen VT, Turnidge JD, Li J, Nation RL. New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection. J Antimicrob Chemother. 2015;70(12):3291–7.

    CAS  PubMed  Google Scholar 

  36. Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol. 2004;2(4):289–300.

    Article  CAS  PubMed  Google Scholar 

  37. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10 (quiz 1–2).

    Article  CAS  PubMed  Google Scholar 

  38. Hombach M, Ochoa C, Maurer FP, Pfiffner T, Bottger EC, Furrer R. Relative contribution of biological variation and technical variables to zone diameter variations of disc diffusion susceptibility testing. J Antimicrob Chemother. 2016;71(1):141–51.

    Article  CAS  PubMed  Google Scholar 

  39. Voss A, Mouton JW, Elzakker EP, Hendrix MG, Howe RA, Goessens WH, et al. Linezolid susceptibility of MRSA and glycopeptide-intermediately susceptible Staphylococcus aureus (GISA)—the Dutch experience. ECCMID; 8 May 2003; Glasgow, Scotland.

  40. Mouton JW, Muller AE, Canton R, Giske CG, Kahlmeter G, Turnidge J. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother 2017. https://doi.org/10.1093/jac/dkx427.

    Google Scholar 

  41. Craig WA, Andes D. Pharmacokinetics and pharmacodynamics of antibiotics in otitis media. Pediatr Infect Dis J. 1996;15(3):255–9.

    Article  CAS  PubMed  Google Scholar 

  42. Craig WA. Antimicrobial resistance issues of the future. Diagn Microbiol Infect Dis. 1996;25(4):213–7.

    Article  CAS  PubMed  Google Scholar 

  43. Udy AA, Roberts JA, De Waele JJ, Paterson DL, Lipman J. What’s behind the failure of emerging antibiotics in the critically ill? Understanding the impact of altered pharmacokinetics and augmented renal clearance. Int J Antimicrob Agents. 2012;39(6):455–7.

    Article  CAS  PubMed  Google Scholar 

  44. Ulldemolins M, Roberts JA, Lipman J, Rello J. Antibiotic dosing in multiple organ dysfunction syndrome. Chest. 2011;139(5):1210–20.

    Article  PubMed  Google Scholar 

  45. Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, et al. Subtherapeutic initial beta-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest. 2012;142(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  46. Goncalves-Pereira J, Povoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of beta-lactams. Crit Care. 2011;15(5):R206.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet. 2005;44(10):1009–34.

    Article  CAS  PubMed  Google Scholar 

  48. Schlender JF, Meyer M, Thelen K, Krauss M, Willmann S, Eissing T, et al. Development of a whole-body physiologically based pharmacokinetic approach to assess the pharmacokinetics of drugs in elderly individuals. Clin Pharmacokinet. 2016;55(12):1573–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guidance for industry: bioanalytical method validation. US Department of Health and Human Services; 2001.

  50. Wong G, Briscoe S, Adnan S, McWhinney B, Ungerer J, Lipman J, et al. Protein binding of beta-lactam antibiotics in critically ill patients: can we successfully predict unbound concentrations? Antimicrob Agents Chemother. 2013;57(12):6165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vinks SA, Heijerman HG, de Jonge P, Bakker W. Photosensitivity due to ambulatory intravenous ceftazidime in cystic fibrosis patient. Lancet. 1993;341(8854):1221–2.

    Article  CAS  PubMed  Google Scholar 

  52. Sime FB, Roberts MS, Warner MS, Hahn U, Robertson TA, Yeend S, et al. Altered pharmacokinetics of piperacillin in febrile neutropenic patients with hematological malignancy. Antimicrob Agents Chemother. 2014;58(6):3533–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–83.

    Article  CAS  PubMed  Google Scholar 

  54. Jaruratanasirikul S, Raungsri N, Punyo J, Sriwiriyajan S. Pharmacokinetics of imipenem in healthy volunteers following administration by 2 h or 0.5 h infusion. J Antimicrob Chemother. 2005;56(6):1163–5.

    Article  CAS  PubMed  Google Scholar 

  55. Mouton JW, Punt N, Vinks AA. A retrospective analysis using Monte Carlo simulation to evaluate recommended ceftazidime dosing regimens in healthy volunteers, patients with cystic fibrosis, and patients in the intensive care unit. Clin Ther. 2005;27(6):762–72.

    Article  CAS  PubMed  Google Scholar 

  56. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Huttner A, Harbarth S, Hope WW, Lipman J, Roberts JA. Therapeutic drug monitoring of the beta-lactam antibiotics: what is the evidence and which patients should we be using it for? J Antimicrob Chemother. 2015;70(12):3178–83.

    CAS  PubMed  Google Scholar 

  58. Paul M, Yahav D, Fraser A, Leibovici L. Empirical antibiotic monotherapy for febrile neutropenia: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2006;57(2):176–89.

    Article  CAS  PubMed  Google Scholar 

  59. Yahav D, Paul M, Fraser A, Sarid N, Leibovici L. Efficacy and safety of cefepime: a systematic review and meta-analysis. Lancet Infect Dis. 2007;7(5):338–48.

    Article  CAS  PubMed  Google Scholar 

  60. Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N. Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clin Pharmacokinet. 2013;52(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  61. Felton TW, Roberts JA, Lodise TP, Van Guilder M, Boselli E, Neely MN, et al. Individualization of piperacillin dosing for critically ill patients: dosing software to optimize antimicrobial therapy. Antimicrob Agents Chemother. 2014;58(7):4094–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hilmer SN, McLachlan AJ, Le Couteur DG. Clinical pharmacology in the geriatric patient. Fundam Clin Pharmacol. 2007;21(3):217–30.

    Article  CAS  PubMed  Google Scholar 

  63. Janson B, Thursky K. Dosing of antibiotics in obesity. Curr Opin Infect Dis. 2012;25(6):634–49.

    Article  CAS  PubMed  Google Scholar 

  64. Bulitta JB, Landersdorfer CB, Huttner SJ, Drusano GL, Kinzig M, Holzgrabe U, et al. Population pharmacokinetic comparison and pharmacodynamic breakpoints of ceftazidime in cystic fibrosis patients and healthy volunteers. Antimicrob Agents Chemother. 2010;54(3):1275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Giamarellou H, Zimelis VM, Matulionis DO, Jackson GG. Assay of aminoglycoside antibiotics in clinical specimens. J Infect Dis. 1975;132(4):399–406.

    Article  CAS  PubMed  Google Scholar 

  66. Noone P, Parsons TM, Pattison JR, Slack RC, Garfield-Davies D, Hughes K. Experience in monitoring gentamicin therapy during treatment of serious gram-negative sepsis. Br Med J. 1974;1(5906):477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, et al. implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51–77.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jenkins A, Thomson AH, Brown NM, Semple Y, Sluman C, MacGowan A, et al. Amikacin use and therapeutic drug monitoring in adults: do dose regimens and drug exposures affect either outcome or adverse events? A systematic review. J Antimicrob Chemother. 2016;71(10):2754–9.

    Article  CAS  PubMed  Google Scholar 

  69. Lacy MK, Nicolau DP, Nightingale CH, Quintiliani R. The pharmacodynamics of aminoglycosides. Clin Infect Dis. 1998;27(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  70. Kashuba AD, Nafziger AN, Drusano GL, Bertino JS Jr. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by Gram-negative bacteria. Antimicrob Agents Chemother. 1999;43(3):623–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zelenitsky SA, Harding GK, Sun S, Ubhi K, Ariano RE. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother. 2003;52(4):668–74.

    Article  CAS  PubMed  Google Scholar 

  72. Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  73. Stankowicz MS, Ibrahim J, Brown DL. Once-daily aminoglycoside dosing: an update on current literature. Am J Health Syst Pharm. 2015;72(16):1357–64.

    Article  CAS  PubMed  Google Scholar 

  74. Hatala R, Dinh T, Cook DJ. Once-daily aminoglycoside dosing in immunocompetent adults: a meta-analysis. Ann Intern Med. 1996;124(8):717–25.

    Article  CAS  PubMed  Google Scholar 

  75. Barclay ML, Begg EJ, Chambers ST. Adaptive resistance following single doses of gentamicin in a dynamic in vitro model. Antimicrob Agents Chemother. 1992;36(9):1951–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Allou N, Allyn J, Levy Y, Bouteau A, Caujolle M, Delmas B, et al. Assessment of the National French recommendations regarding the dosing regimen of 8 mg/kg of gentamicin in patients hospitalised in intensive care units. Anaesth Crit Care Pain Med. 2016;35(5):331–5.

    Article  PubMed  Google Scholar 

  77. Downes KJ, Dong M, Fukuda T, Clancy JP, Haffner C, Bennett MR, et al. Urinary kidney injury biomarkers and tobramycin clearance among children and young adults with cystic fibrosis: a population pharmacokinetic analysis. J Antimicrob Chemother. 2017;72(1):254–60.

    Article  PubMed  Google Scholar 

  78. Rea RS, Capitano B, Bies R, Bigos KL, Smith R, Lee H. Suboptimal aminoglycoside dosing in critically ill patients. Ther Drug Monit. 2008;30(6):674–81.

    Article  CAS  PubMed  Google Scholar 

  79. Smith PF, Ballow CH, Booker BM, Forrest A, Schentag JJ. Pharmacokinetics and pharmacodynamics of aztreonam and tobramycin in hospitalized patients. Clin Ther. 2001;23(8):1231–44.

    Article  CAS  PubMed  Google Scholar 

  80. Bowker KE, Noel AR, Nicholls D, Tomaselli SG, MacGowan AP. Pharmacodynamics of amikacin against aerobic Gram-negative rods studied in an in vitro model of infection. Washington: ICAAC; 2014. p. A-042.

    Google Scholar 

  81. Davis BD. Bactericidal synergism between beta-lactams and aminoglycosides: mechanism and possible therapeutic implications. Rev Infect Dis. 1982;4(2):237–45.

    Article  CAS  PubMed  Google Scholar 

  82. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. 2015 ESC Guidelines for the management of infective endocarditis: the task force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075–128.

    Article  PubMed  Google Scholar 

  83. Agence francaise de securite sanitaire des produits de s. Update on good use of injectable aminoglycosides, gentamycin, tobramycin, netilmycin, amikacin. Pharmacological properties, indications, dosage, and mode of administration, treatment monitoring. Med Mal Infect. 2012;42(7):301–8.

    Article  Google Scholar 

  84. Robert J, Pean Y, Alfandari S, Bru JP, Bedos JP, Rabaud C, et al. Application of guidelines for aminoglycosides use in French hospitals in 2013-2014. Eur J Clin Microbiol Infect Dis. 2017;36(7):1083–90.

    Article  CAS  PubMed  Google Scholar 

  85. Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435–86.

    Article  CAS  PubMed  Google Scholar 

  86. Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC, Craig WA, Billeter M, et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis. 2009;49(3):325–7.

    Article  PubMed  Google Scholar 

  87. Steinmetz T, Eliakim-Raz N, Goldberg E, Leibovici L, Yahav D. Association of vancomycin serum concentrations with efficacy in patients with MRSA infections: a systematic review and meta-analysis. Clin Microbiol Infect. 2015;21(7):665–73.

    Article  CAS  PubMed  Google Scholar 

  88. Matsumoto K, Watanabe E, Kanazawa N, Fukamizu T, Shigemi A, Yokoyama Y, et al. Pharmacokinetic/pharmacodynamic analysis of teicoplanin in patients with MRSA infections. Clin Pharmacol. 2016;8:15–8.

    PubMed  PubMed Central  Google Scholar 

  89. Greenberg RN. Treatment of bone, joint, and vascular-access-associated gram-positive bacterial infections with teicoplanin. Antimicrob Agents Chemother. 1990;34(12):2392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee CH, Tsai CY, Li CC, Chien CC, Liu JW. Teicoplanin therapy for MRSA bacteraemia: a retrospective study emphasizing the importance of maintenance dosing in improving clinical outcomes. J Antimicrob Chemother. 2015;70(1):257–63.

    Article  CAS  PubMed  Google Scholar 

  91. Ueda T, Takesue Y, Nakajima K, Ichki K, Wada Y, Komatsu M, et al. High-dose regimen to achieve novel target trough concentration in teicoplanin. J Infect Chemother. 2014;20(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  92. Summary of product characteristics for Targocid® (teicoplanin), electronic medicines companion (Internet). Electronic Medicines Companion. 2014. http://www.medicines.org.uk/emc/medicine/27321. Accessed 1 Oct 2017.

  93. Sorgel F, Hohl R, Glaser R, Stelzer C, Munz M, Vormittag M, et al. Pharmacokinetics and pharmacodynamics of antibiotics in intensive care. Med Klin Intensivmed Notfmed. 2017;112(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  94. Pea F, Poz D, Viale P, Pavan F, Furlanut M. Which reliable pharmacodynamic breakpoint should be advised for ciprofloxacin monotherapy in the hospital setting? A TDM-based retrospective perspective. J Antimicrob Chemother. 2006;58(2):380–6.

    Article  CAS  PubMed  Google Scholar 

  95. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. 1993;37(5):1073–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schentag JJ. Antimicrobial action and pharmacokinetics/pharmacodynamics: the use of AUIC to improve efficacy and avoid resistance. J Chemother. 1999;11(6):426–39.

    Article  CAS  PubMed  Google Scholar 

  97. Matsuo K, Azuma M, Kasai M, Hanji I, Kimura I, Kosugi T, et al. Investigation of the clinical efficacy and dosage of intravenous ciprofloxacin in patients with respiratory infection. J Pharm Pharm Sci. 2009;11(2):111s–7s.

    Article  PubMed  Google Scholar 

  98. Khachman D, Conil JM, Georges B, Saivin S, Houin G, Toutain PL, et al. Optimizing ciprofloxacin dosing in intensive care unit patients through the use of population pharmacokinetic-pharmacodynamic analysis and Monte Carlo simulations. J Antimicrob Chemother. 2011;66(8):1798–809.

    Article  CAS  PubMed  Google Scholar 

  99. Pea F, Milaneschi R, Baraldo M, Lugatti E, Talmassons G, Furlanut M. Ciprofloxacin disposition in elderly patients with LRTI being treated with sequential therapy (200 mg intravenously twice daily followed by 500 mg per os twice daily): comparative pharmacokinetics and the role of therapeutic drug monitoring. Ther Drug Monit. 2000;22(4):386–91.

    Article  CAS  PubMed  Google Scholar 

  100. Pai MP, Bearden DT. Antimicrobial dosing considerations in obese adult patients. Pharmacotherapy. 2007;27(8):1081–91.

    Article  CAS  PubMed  Google Scholar 

  101. Kuti JL, Nightingale CH, Nicolau DP. Optimizing pharmacodynamic target attainment using the MYSTIC antibiogram: data collected in North America in 2002. Antimicrob Agents Chemother. 2004;48(7):2464–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. van Zanten AR, Polderman KH, van Geijlswijk IM, van der Meer GY, Schouten MA, Girbes AR. Ciprofloxacin pharmacokinetics in critically ill patients: a prospective cohort study. J Crit Care. 2008;23(3):422–30.

    Article  PubMed  Google Scholar 

  103. Abdulla A, Hunfeld N, Dijkstra A, Duran S, Mouton JW, Gommers D, et al. Beta-lactam and quinolone pharmacokinetic/pharmacodynamic target attainment in critically ill patients (EXPAT). ECCMID2017. p. EP0355.

  104. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840–51 (quiz 59).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Johan Mouton for his careful review and helpful comments.

Funding

None. A.H. was supported in part by the EU-funded AIDA project (Grant agreement 278348), and B.H. was supported in part by the DRIVE-AB project (Grant agreement 115618), funded in the context of the Innovative Medicines Initiative Joint Undertaking (IMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Huttner.

Ethics declarations

Conflict of Interest

Anouk E. Muller, Benedikt Huttner, Angela Huttner declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muller, A.E., Huttner, B. & Huttner, A. Therapeutic Drug Monitoring of Beta-Lactams and Other Antibiotics in the Intensive Care Unit: Which Agents, Which Patients and Which Infections?. Drugs 78, 439–451 (2018). https://doi.org/10.1007/s40265-018-0880-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-018-0880-z

Navigation